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Introduction

Metal isApple'sAPI for creating computer graphics on the Macintosh, iOS and tvOS platforms.

Metal provides support for GPU-accelerated 3D graphics as well as GPU computation workloads. Metal
isalow level API, meaning Metal provides alow overhead API for creating graphics and computational
workloads but requires significantly greater effort to use. Low level APIs are very flexible but notorious
for being extremely hard to use and harder to learn.

The purpose of this document is to both introduce Metal, and dive into different aspects of Metal so you
can create very complex graphics and compute-bound applications using Metal .

Note that because different APl entry points can have a tremendous amount of complexity
and different options when using them, this book is not necessarily intended to beread in
order. Links are provided for more information, and for greater depth in discussing those
API endpoints. Because of that, this book should be read as a PDF file on a computer
with an Internet connection.

Note also that I'mtrying to be intentionally terse in my descriptions, in order to get to the
heart of the matter as quickly as| can.

This document is not an introduction to Computer Graphics, and assumes a degree of
knowl edge about computer graphics and some familiarity with OpenGL or Direct X.

Copyright ©2019 Wliam Woody, All Rights Reserved.

Permission to make digital or hard copies of all or part of thiswork for personal or for in-person
classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, or post on serversor redistribute to lists requires prior specific written
permission.
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The Metal Execution Model

Computers which have hardware-supported 3D rendering generally provide this functionality using a
Graphics Processing Unit. A graphics processing unit is a separate microcomputer which provides
specialized functionality for performing massively parallel calculations, such as those used when
accelerating 3D computer graphics.

One key thing about the GPU is that you can write custom software that runs on the GPU separate from
the CPU. These "shader functions' permit you to write programs for performing complex calculations on
the GPU for various visual effects, and for computational tasks. Shaders are discussed in greater detail in

alater chapter.

The Metal Framework provides a method for communi cating requests to a separate GPU, such as the one
built into the iPhone or the graphics card built into the Macintosh.

Thisinvolves APIs for obtaining a representation of a GPU, for copying datato a GPU (such as texture
map data or geometry data), and for sending commands to use that data for performing computations and
for rendering graphics.

The execution model used by Metal isthat of a device which a buffer full of commandsis sent.

id<MTLDevice>

id<MTLCommandBuffer>
CPU - GPU

id<MTLCommandQueue>

Each buffer of commands consists of one or more encoded collections of commands.

id<MTLCommandBuffer>

id<MTLCommandEncoder>

id<MTLCommandEncoder>

id<MTLCommandEncoder>

id<MTLCommandEncoder>

Commands are then executed asynchronously on the GPU. The Metal API contains a number of methods
for receiving callbacks when a command finishes, as well as methods for copying data to the GPU. With
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this, you could construct amodel of a planet and space ship--and during rendering simply update the
relative position of the two bodies in order to reduce the amount of data that has to be sent back and forth
between the CPU and the GPU.

Because the types of commands sent in a single command buffer can be mixed, you can even construct a
simulation that runs entirely on the GPU using a compute kernel, and display the results of the simulation
graphically using a 3D rendering shader--all without involving the CPU in the calculations.

The Use of Protocols

The Apple Metal API makes extensive use of Objective C Protocols in order to hide the implementation
of the underlying Metal objects. Thisimpliesthat obtaining and using certain objects within Metal
follows awell-defined pattern of using a protocol (generally MTLDevice, though not always) to obtain
new instances of objects.

Further, some objects are expensive to abtain or initialize, so they are expected to be set up on the
initialization of your application, and reused whenever possible. Thisimplies the initialization code of
your application can become extremely complex as you set up the GPU for rendering or for performing
computational tasks.

The Device

A GPU isrepresented by the MTL Device protocol. This protocol provides interfaces for copying datato
the device, for compiling or obtaining shader functions on a GPU, and for submitting requests.
Obtaining a Device

The easiest way to obtain adevice is by using MTL CreateSystemDefaultDevice. On the Macintosh

(where multiple GPUs may be installed), there are techniques for device selection which are more
efficient that are not covered in this document.

The Command Queue

The MTL CommandQueue protocol represents the communications queue for sending commands to the
GPU. Thisis obtained from the MTL Device protocol, and should be obtained once and reused as
required.

The Command Buffer

The MTL CommandBuffer protocol represents a collection of commands to be sent to the GPU and
executed as asingle unit. Thisis obtained from the M TL CommandQueue protocol.

Generally when building a 3D application, you would create one MTLCommandBuffer to represent the
commands sent to the GPU to render a single frame. Thus, you would create a command buffer each time
you render a frame--updating the command parameters necessary to show movement on the screen.
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Once al of the commands have been encoded in this buffer, you can optionally add handlers that are
called back when the buffer is scheduled for execution or when it completes, to specify the drawable in
which the graphics will be presented (if the commands represent a graphics operation), and finaly to
commit the commands to the GPU for execution.

The Command Encoder

The MTL CommandEncoder protocol represents the parent protocol of a collection of protocols used to
encode commands in a command buffer. You would obtain an encoder from the MTL CommandBuffer,
using the appropriate method depending on the types of commands to be encoded.

A command buffer may contain one or more sets of commands encoded with different encoders, and the
commands from each encoder is executed in the order they are created in a command buffer.

Encoders are created one at atime. Thus, if you have multiple encoders (for example, a compute
command which runs one step of a simulation, followed by arender command which renders the results
on adisplay), the compute command encoder in our example is guaranteed to run first.

Multiple encoders can be used for creating complex rendering effects, such as performing shadow
mapping by encoding the two separate rendering passes required as two separate rendering commands.
Multiple rendering passes can also be used for reflection mapping and deferred shading.

Rendering Command Encoder

The most commonly used command sent to a GPU is rendering graphics, and thisis encoded using the
MTL RenderCommandEncoder. The rendering encoder is obtained from the MTL CommandBuffer by first
constructing an MTL RenderPassDescriptor class and setting the parameters that will be used by that
rendering pass--such as the destination screen or texture that the graphical results will be rendered to.

You would then set the MTL RenderPipelineState representing the rendering pipeline that will be used to
render graphics on the display. Rendering pipelines are expensive objects to create and are generally built
in advance during initialization. Multiple pipelines can be used in a single command encoder to specify
different rendering effects for different objects. Objects drawn with the drawing commands in a render
command encoder are drawn with the last set pipeline state.

You would set up the different texture references, buffer references and other parameters used for
rendering objects.

Then you would issue the appropriate drawing commands to draw the primitives (whose geometry was
set with the buffer references above).

And finally you would finish encoding by using the endEncoding method.

Compute Command Encoder

The compute command encoder is used to send a compute request to the GPU, and thisis encoded using
the MTL ComputeCommandEncoder. This follows asimilar pattern as the rendering command encoder
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above: a compute encoder is obtained from the MTL CommandBuffer, and a M TL ComputePipelineState
representing the compute pipeline (with areference to the kernel function on the GPU to execute) is
associated with it.

A compute pipeline has anumber of options associated with it involving the number of GPU threads that
are associated with the task, as well as the resources associated with it.

Like the render command encoder, when you are finished encoding the commands (including specifying
the buffers passed to the command buffer for use during execution), you would finish encoding with the
endEncoding method.

Memory Management Tasks

Memory management tasks (such as copying data to the GPU) can be encoded using the

MTL BlitCommandEncoder. Generally data such as textures or models or transformation matrices used to
calculate the position of 3D datais handled by manipulating the data buffers directly, but this command
also provides you the ability to handle certain tasks, such as blurring of images, where other techniques
may not work as efficiently.

Parallel Rendering

The MTL Parallel RenderCommandEncoder allows for encoding multiple multiple rendering passesin
paralel, and can be used to create M TL RenderCommandEncoders for rendering passes which operate
simultaneously. This can be used to gain greater throughput for complex rendering tasks.

This document does not discuss either the MTL BlitCommandEncoder or the
MTL Parallel RenderCommandEncoder protocols.
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Building a Basic MacOS Metal Application

This section discusses the steps for putting together a basic MacOS metal application. The first section
will describe how to put together just enough of an application to get a blank screen. The second section
will discuss adding geometry to render atriangle. The third will discuss drawing a more complex shape,
and the fourth will discuss texture maps.

Each of these sections are intended to provide a very simple introduction to some of the basic features of
Metal, and should help you understand the role of the different componentsin doing basic graphics
operations.

All source code for the examples below can be downloaded from GitHub. You are also free to use the
sources on GitHub in your own projects.

Starting a New Metal Application

The goal of this section is to introduce the basic metal view class and delegate, obtaining a device,
initializing a command queue and buffer, and enqueuing the buffer to the GPU to render a blank screen.

This may not sound like alot, but it does illustrate the basic moving parts of a Metal application.

Creating the View

Currently the proper approach for building MacOS, i0S and tvOS applications which use metal isto use
the MTKView class as the destination view. The MTKView class uses the MTKViewDelegate class to
actually handle rendering.

Note: Aswith all applications which use a delegate pattern, you have three choicesin
developing your application.

You can create a separate del egate class object (inheriting from NSObject) which
contains the rendering methods for your application. You would then create an instance
of your class in the NSviewController/UIViewController of your class, and add it asa
delegate to the MTKView class.

You can make your NSviewController/UIViewController conformto the
MTKViewDelegate protocol, and set the view controller as the delegate to the MTKView
class.

Or you can inherit from the MTKView class and make it conformto the
MTKViewDelegate protocol, and have the view class set itself asits own delegate.

In our sample code we use the third option. Thereis nothing special about any of these
options and they have their own advantages and disadvantages.

Apple's"Hello Triangle" example gives a good example of the first option of a separate
rendering class.
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In our sample code we set the root view of our view controller inside our Main.storyboard file to be an
instance of our MXView class, which inherits from MTKView and which conforms to the
MTKViewProtocol. Thus, when our application starts up, the view controller and view are assembled for
us.

You can use other techniques for constructing the rendering view in aUlView or NSView object by using
the CAMetalL ayer class.
Initializing our MTKView.

Before we can use our MTKView to render a blank screen, we need to initialize afew thingsfirst. The
code for initializing our view is contained in the internal Init method, which isinvoked by both the
initWithFrame: and initWithCoder: methods.

Obtaining the GPU Device

The MTKView by default does not have a device associated with it, and during initialization you must
obtain the GPU device to use for rendering.

Within our source code the device is obtained with the line

sel f.device = MILCreat eSyst enDef aul t Devi ce();

Setting Other MTKView Parameters

There are a number of other parameters that can be set with the MTKView class, some of which are
required. For our application we set both the pixel format of the texture that represents our display, and
the default color to clear the display to, with the calls:

sel f. col or Pi xel Format = MILPi xel For mat BGRA8UNnor m
sel f.clearCol or = MILCO ear Col or Make(0.1, 0.1, 0.2, 1.0);

There are a number of other optional parameters that may be set to cause the MTKView class to behave
differently, including settings which control frame rate, and if the display should be redrawn continuously
on atimer loop or only when the display has been invalidated.

Obtaining the Command Queue

The command queue is directly obtained from the device and stored in its own class property for reuse.

sel f. commandQueue = [sel f. devi ce newConmandQueue] ;

Implementing the MTKViewDelegate Methods

There are two methods that must be implemented in the MTKView delegate.
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- (void)mtkView:(MTKView *)view drawableSizeWillChange: (CGSize)size

This method isinvoked by the MTKView when its size changes. You would use this method to handle
tasks such as setting the transformation matrices of your rendering engine to correct for the changed
aspect ratio, and potentially for reloading or resetting textures or other resources to handle the changed
resolution of the screen.

For our first sample application, this method does nothing.

- (void)drawlnM TKView:(MTKView *)view

This method is called each time you view needs to be redrawn. The parameter passed is the view that
needs to be redrawn. (Since our sample code inherits from the MTKView class, the view parameter will
be the same as self.)

For our drawing method we will need to carry out the following stepsin order to request that our screen

be filled with a background color.

Obtaining a Command Buffer.

First, we obtain a command buffer for constructing the rendering commands to render the screen. Because
the command buffer renders the screen once, if we were creating an animation we would effectively
create anew buffer for every frame of our animation.

We do this with the call

i d<MTLConmandBuf fer> buffer = [sel f. comandQueue comandBuffer];

Creating a Command Encoder

We next create a rendering command encoder for performing a single rendering pass to render our blank
screen.

Note that if we were rendering a complex scene that requires multiple rendering passes, we could encode
each rendering passin its own separate M TL RenderCommandEncoder. But since we are doing asingle
rendering pass, we only need one MTL RenderCommandEncoder.

Remember to create a command encoder we must first create a M TK RenderPassDescriptor with the
parameters for our encoder.l Because we are rendering to our display, we can use the convenience
method in the MTKView classto obtain adefault descriptor for rendering to our display.

MILRender PassDescri ptor *descriptor = [view current Render PassDescriptor];

Thisis effectively a shortcut for the following:

1 Thispattern: of creating a descriptor then using the descriptor to generate an encoder or state, isa
common design pattern in Metal.
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i d<CAMet al Dr awabl e> dr awabl e = sel f. current Drawabl e;

MILRender PassDescri ptor *descriptor = [ MI[LRender PassDescri ptor
render PassDescri ptor];

descriptor.col orAttachnents[0].texture = drawabl e.texture;
descriptor.col orAttachnents[0].| oadActi on = MILLoadActi onCl ear;
descriptor.col orAttachnents[0].storeActi on = MILSt oreActi onStore;
descriptor.col orAttachnents[0].cl earCol or = self.clearColor;

In the above snippet of code, we first obtain the drawable (which is vended? by the method), then we use
it as the destination texture during rendering in our rendering pass. We also specify that the results of the
rendering command be stored in our screen ‘texture’, that it should be cleared before drawing into it, and it
should be cleared to the provided color.

Note: For a system that requires multiple rendering passes, such as with reflection,
generally we would create a separate writeabl e texture map to render into in the first
pass, then use the results in that texture map in the second pass for our reflection special
effect.

We then use the descriptor to generate our rendering encoder:
i d<MTLRender CommandEncoder > encoder = [buffer
r ender CommandEncoder Wt hDescri pt or:
descriptor];

Finishing Up.

Since we are not drawing anything (but just allowing the encoder to clear the screen to the background
color) we can finish up our encoder by calling:

[ encoder endEncodi ng];

If we were doing multiple rendering passes (say, for reflection), we would start constructing the next
rendering pass here. But since we are not we can finish up our command buffer and submit it to the GPU
for rendering.

To finish up wefirst indicate to the buffer that once our screen has been redrawn, it can be
"presented” (that is, displayed on the screen) by calling:

[ buffer presentDrawabl e: sel f.currentDrawabl e];
Once we've done this, we can submit the buffer of commands to the GPU for rendering by calling:

[buffer conmit];

2 Thatis, each time the method is called, a new object is created from a pool of abjects. Thus, when
you call this method, you should store the result in alocal variable and reuse the same object (rather
than calling currentDrawabl e repeatedly) for the duration of your method call.
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Once all thisis done, when we run our finished application (which can be downloaded from GitHub) we
should see... well...

It's not much, granted. But it does show our code works.

Adding Support To Draw A Triangle.

The next obvious step isto draw something. In order to draw something we will need to add support for a
rendering shader (that is, asmall program that actually runs on the GPU), for setting up arendering
pipeline (so we know which code snippets on the GPU to execute), for creating a buffer (so we can send
geometry data to the GPU), and for adding rendering commands to our render command encoder.

A Word About Shaders

Shaders are discussed in greater detail later in this document. Shaders, however, are basically small
routines written in amodified version of C++, which are compiled by Xcode and which are automatically

loaded into the GPU for you when your application starts up. Most of the interesting stuff that can make
for visually impressive displays for video games comes from a deep understanding of how shaders work.

In the next few examples we will make very basic use of shaders, and try to introduce afew very basic
concepts along the way.
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A Word About Our Initialization Routine

Our prior example put all of our initialization code inside a single internalInit method. However, this can
be poor practice in areal-world example, simply because the amount of code necessary to initialize our
drawing routines can grow to be extraordinarily large. In fact, because of the nature of GPU rendering
(where for performance we want to put as much stuff in the GPU as we reasonably can), for many
programs our initialization routine may be the largest block of routines in our entire program.

Thus, we will get into the practice of refactoring our internal initialization into smaller chunks of more
manageabl e code.

Creating Our Geometry In A Buffer

As noted above, before we can render any geometry we must somehow get the geometry to our GPU. For
our triangle we create an MTL Buffer object with the raw data that makes up the 3 corners of our triangle.
Because geometry is potentially very expensive we create our triangle as part of our internalInit method
cal.

Because we are both laying out the memory of our geometry and using it in the GPU, we must make sure
the format of the data stored in memory is known to the GPU. The way we handle thisis by declaring a
new class MXVertex which represents the datain our triangle. We then initialize our triangle manually:

static const MXVertex triangle[] =

{
/1 Honobgeneous pts , RGBA colors
{{ 1, -1, o, 12}, {1, 0, O, 11} 1},
{{-1, -1, o, 1}, {0 1, O, 11} 1},
{ { 0O, 1, o, 1}, {0 O 1, 11} 1},
1

The location of our points are given in homogeneous coordinates, which we use for handling complex
transformations, such as rotation and scaling and perspective.

Once we've constructed the block of memory with our vertices, we create the MTLBuUffer with the
following call:

self.triangle = [sel f.device newBufferWthBytes:triangle
| engt h: si zeof (tri angl e)
options: MTLResour ceOpt i onCPUCacheMbdeDef aul t];

Thiswill take the block of memory and make it available to the GPU.

Because creating geometry is expensive we do this at initiaization time. If you were writing an
application that modified geometry (such asa 3D CAD program) you would cache the datain an
MTLBuUffer rather than trying to generate the MTLBuffer on the fly each time you render the display.
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Creating Our Pipeline

Next we create our pipeline. This can be far more complicated in that we need to create our shader
functions used by our pipeline to control how we will display our triangle on the GPU, obtain our shaders,
and configure our pipeline to pass our geometry to our shaders for rendering.

Thisis also generally done at initialization time as all of the operations are quite expensive.

Creating the Shader Functions

First we need to create our shader functions.

We have two shader functions for arendering pass. The first is the vertex shader function; the vertex
shader handles the transformation of the location of each vertex in our geometry so it is displayed in the
correct position on the screen.

The second is the fragment shader function; it handles computing the color of each pixel on the screen
based on information passed to it from the vertex shader.

For thiswe need to create a.meta file; thefile is compiled by Xcode and stored as aresource that is then
loaded into our GPU when we start up our Metal application.

For our vertex and fragment shaders we need to set up two structures: one declaring the input vertex, and
one which declares the vertex output:

struct Vertexln {
float4 position [[attribute(MXAttributel ndexPosition)]];

float4 col or [[attribute(MXAttri butel ndexCol or)]];
1
struct VertexQut
{
float4 position [[position]];
float4 col or;
1

Notice they are more or less the same thing. However, the first declaration indicates the attribute indexes
(in the [[attribute(N)]] declarations) that will also be used when setting up our vertex attributes for our
pipeline, and the second establishes (in the [[position]] declaration) which stores the coordinates for
extrapolation of vertices into fragments for rendering.

In practice the two would be very different, depending on the type of rendering we're performing.

Our vertex shader is declared like a C function call, but with extra attributes associated with the
parameters indicating where they come from:

vertex VertexQut vertex_main(Vertexln v [[stage_in]])

{
VertexQut out;
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out. position = v.position;
out.col or = v.color;

return out;

}

Our vertex shader basically copies the geometry to the output without modification. When we start doing
3D rendering, we will perform other math operations that update the output position based on a
transformation matrix--but that's for later.

Our fragment shader is even easier. The fragment shader is called on each visible pixel found in the
triangle whose vertices were transformed by our vertex shader--with values in VertexOut extrapolated
across the surface of the triangle. So our fragment shader is pretty simple:

fragment float4 fragnment_mmi n(VertexQut v [[stage_in]])

{
}

return v.color;

LoadingtheLibrary

Once we've created the .metal file, we can access information about our GPU's compiled graphic or
compute functions by using the MTL Library protocol. We do this during initialization of our pipeline,
storing areference to our library away for later use.

We obtain our library from our device by writing:

self.library = [self.device newDefaul tLibrary];

Obtaining Referencesto Our Shader Functions

We now can obtain references to our two shader functions by name from our library, storing them in two
MTL Function objects.

sel f.vertexFunction = [self.library newFuncti onWthNane: @vertex_mai n"];
sel f.fragnment Function = [self.library newruncti onWt hNane:
@fragment _main"];

Constructing the Vertex Descriptor

The vertex descriptor object MTLVertexDescriptor is used to describe the layout of the memory we
allocated when we constructed our geometry above. Thisis used to help tie the memory format and layout
of our triangl€e's vertices to the attribute positions in our vertex shader function.

In each attribute of our MTLVertexDescriptor we indicate the type of the attribute (such as a vertex made

of four floating-point numbers), the offset of the attribute in memory, and the size of the attributein
memory.
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We also indicate the 'stride’; that is, the size of each vertex in memory.

MILVert exDescriptor *d = [[ MILVertexDescriptor alloc] init];
d.attributes][ MKAttri butel ndexPosition].format = MILVertexFor mat Fl oat 4;
d.attributes][ MKAttri but el ndexPosition].offset = 0;
d.attributes][ MKAttri but el ndexPosition].bufferlndex = 0;
d.attributes[ MKAttri but el ndexCol or].format = MILVert exFor mat Fl oat 4;
d.attributes[ MKAttri but el ndexCol or].of fset = sizeof (vector_float4);
d.attributes[ MKAttri but el ndexCol or] . bufferlndex = 0;

d

.layouts[0].stride = sizeof (MXVertex);

Constructing the Pipeline Descriptor

Now that we have all of the pieces used by our pipeline descriptor, we can now build our pipeline
descriptor M TL RenderPipelineDescriptor.

MILRender Pi pel i neDescri ptor *pi pel i neDescriptor =

[ MTLRender Pi pel i neDescri ptor new;

pi pel i neDescri ptor.vertexFunction = sel f.vertexFunction;

pi pel i neDescri ptor.fragnent Functi on = sel f.fragment Functi on;
pi pel i neDescri ptor.col or Attachments[0]. pi xel Format =

sel f. col or Pi xel For nat ;

pi pel i neDescri ptor.vertexDescriptor = d;

Building the Pipeline State Object

Once we have the descriptor we build the M TL RenderPipelineState object for usein our system. We store
this as part of our class for reuse when we actually want to render some graphics.

sel f.pipeline = [sel f.device newRender Pi pel i neSt at eW t hDescri ptor:
pi pel i neDescri ptor
error:nil];

Rendering Our Triangle

Now that we've constructed a pipeline state, we can use it with our MTL RenderCommandEncoder to
actually render our triangle.

Setting our Render Pipeline State

After we have constructed our MTLRenderCommandEncoder we can set the pipeline by calling:
[ encoder set Render Pi pel i neState: sel f. pi peline];

Note that the pipelineis then used on the drawing commands that follow. If we then were to call
setRenderPipelineState: with a new pipeline, that new pipeline would apply to subsequent drawing calls.
In this way the same rendering pass can use multiple pipelines to construct the image.
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Setting the Vertex Buffer With Our Triangle Geometry

We now pass to the encoder the vertex geometry we will render.

[encoder setVertexBuffer:self.triangle
of fset:0
at | ndex: MXVert exl ndexVerti ces];

Note: Because our vertex shader usesthe [[stage in]] attribute to specify our vertices,
the vertex buffer containing our geometry must be at index 0. The [[stage in]]
parameter implies our geometry will come fromindex 0.

(TODO: Verify thisis correct, and that the buffer O index is not implicit by the position in
the parameter list. Verify we can't mix stage_in and buffer:N attributes.)

Drawing Our Triangle
We can now draw our triangle by calling the appropriate drawing routine with our encoder:

[encoder drawPrimitives: MILPrimtiveTypeTriangl e
vertexStart: 0
vertexCount: 3] ;

Once all these changes have been made, when we compile and run our application (which can be
downloaded from GitHub), we should see:

Okay, soit's alittle more than what we had the last time. But now we've gotten shaders working, we can
send geometry to our GPU, we can send geometry to our GPU for rendering.
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Drawing Our Triangle in 3D

Next we'd like to draw our trianglein 3D.

The problem with alow level API like Metal isthat it does not provide a number of tools for 3D graphics,
but expects you to provide them yoursdlf, either by writing the code yourself or by incorporating a third
party library.

S0 in this section we will add support for 3D by writing our own 3D transformation system, and
incorporate 3D transformations into our vertex shader by sending updated transformation matrices to the
vertex shader to animate arotating triangle.

3D Transformations

Homogeneous coordinate systems and transformations used in computer graphicsis an entire topic that
isn't covered here. Thereis a brief introduction to the subject later in this document.

Creating the Transformation Class

The MXTransformationStack class provides a complete implementation of transformation matrices
commonly used in computer graphics (for translation, scaling, rotation and perspective), and also provides
amechanism for pushing and popping transformation matrices on a stack so that elements can be re-used
when rendering a model.

Note: The ability to push and pop transformations is useful when animating an
articulated figure. For example, the overall body transformation may be constructed first,
then pushed on a stack. The additional transformations for positioning and moving an
armis constructed and used, then the body transformation is popped so the next arm's
transformation can be constructed, and so forth.

By doing this a hierarchy of transformations, corresponding to the hierarchy of
relationships between components of a model, can be constructed and managed relatively
easily.

Our transformation stack operates with the idea that the transformations are constructed
back to front: that is, the last transformation (such as positioning the body in the world
scene) is added first, then the next transformation (such as positioning the armrelative to
the body) is added next, and so forth.

Adding Transformationsto Our MXView Class

Each M X TransformationStack object represents a single transformation matrix which accumulates
multiple tranglations, rotations and scaling operations into a single 4x4 matrix of numbers. We use two
such matrices to represent the full trandation; one for the perspective transformation and one for the
model. We do this for later, when we will use the model matrix for lighting calculations.

We also add constructors in a new setupTransformation method which is called from our initializer.
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Updating -mtkView:drawableSizeWillChange:

The method in the MTK ViewDelegate protocol is called when the size of the screen changes. We can use
this to set the proper aspect ratio of our display by resetting and initializing the view perspective. When
the delegate method is called, we reset the view matrix and set the perspective matrix with the correct
aspect ratio:

[self.view clear];
[sel f.view perspective:MPI/3
aspect:si ze. wi dt h/ si ze. hei ght
near:0.1
far:1000];

Updating the model matrix to rotate aswe redraw the display.

We update the model matrix each time we pass through the draw method, with the current elapsed time
since the starting of our application. We then trand ate our triangle away from the eye position, and slowly
rotate our triangle by the amount of elapsed time.

doubl e el apsed = CACurrent Medi aTine() - self.startTine;

[sel f.nodel clear];

[sel f.nmodel translateByX:0 y:0 z:-2];

[ sel f.nodel rotateAroundAxis: (vector_float3){ 0, 1, 0 } byAngle:el apsed];
[sel f.model scal eBy: 2];

Updating the Vertex Shader

Now that we have the transformation matrices which represent how we ater the 3D geometry on our
display, we must pass the transformation matrices to the GPU so our vertex shader can update the location
of our vertices.

To do this, we define the structure that we wish to pass to the GPU, then set the structure and copy it to
the GPU viaa MTLBuffer. On the GPU side, we obtain a reference to the buffer and use the data passed
to usto update the vertices.

Declarethe Uniforms Structure

We declare the structure format in the shader types header. That way the same declaration is used on both
sides: the Metal side and the Objective-C side. We can do this because we do not need to use any attribute
parameters for the Metal declarations that the Objective-C compiler does not understand.

typedef struct MXUni forns
{

mat ri x_f I oat 4x4 nodel ;
matri x_fl oat 4x4 vi ew,
} MXUni f or irs;
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Update the Vertex Shader Function

We need to update our shader function to use the uniforms data that will be passed in. We're passing in the
parameters using an MTLBuffer, passed in using the setVertexBytes: length: atindex: method call, which
we then match up to the parameter in our vertex buffer using the [[buffer(n)]] attribute.

We then update our vertex location to the output vertex location through matrix/vector multiplication.

vertex VertexQut vertex_main(Vertexln v [[stage_in]],
constant MXUni forns &u [[buffer(MXVertexl ndexUniforns)]])

{
VertexQut out;
float4 worl dPosition = u.nodel * v.position;
out.position = u.view * worl dPosition;
out.color = v.color;
return out;

}

Passing in the Uniforms

In our drawing method we need to pass the uniform datainto the buffer.

Right after recalculating the model CTM for our drawing, we pass the data into the vertex buffer through
initializing a structure. We then copy the bytesto the GPU:

MXUni f or s u;
u.view = self.view ctm
u. nodel = self.nodel.ctm
[ encoder setVertexBytes: &u
| engt h: si zeof ( MXUni f or rs)
at | ndex: MXVer t exl ndexUni f or nms] ;

Putting all of these together and running our application (which can be downloaded from GitHub), we
now have arotating triangle:
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®0e Window

Loading More Complex Objects From a Resource

Now of coursethetriangle isinteresting, and it's a useful model for if we wish to draw more complex
objects constructed in memory, it's often useful to be ableto load predefined objects from aresource. You
may wish to do this when building a game, for example.

Resources are loaded using an MDL Asset, and we use the MDLVertexDescriptor to describe the vertex
offsetsin order to load our asset into memory into a known format.

The asset we will be loading is a variation of the Utah Teapot.

Because we have a complex object we're rendering, we aso heed to enable z-buffering so that the back
side of the teapot does not draw in front of the front side.

Updating the Vertices for Our Model

First, we must rewrite the vertex descriptor by rewriting the code that generates our vertex descriptor. We
also need to update the vertex structure on both the Metal and Objective-C sides to match.

The teapot.obj file contains a 3D location for each vertex, along with a 3D normal (an arrow pointing out
from the center of the teapot at aright angle to the surface), and a texture coordinate so we can wrap our
teapot with atexture.

Rewriting Our Structures

We first need to replace our MXVertex structure in Objective-C:
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t ypedef struct MxXVertex

{
vector _float3 position;
vector float3 nornal;
vector _float2 texture;
} MXVert ex;
AndinMeta:

struct Vertexln {
float3 position [[attribute(MXAttributelndexPosition)]];
float3 normal [[attribute(MXAttri but el ndexNormal)]];
float3 texture [[attribute(MXAttri butel ndexTexture)]];

b

Rewriting the Vertex Descriptor

Next we rewrite the vertex descriptor to match our vertex structure. Thisis done using the
MDLVertexDescriptor class so we can also use it to load our object from a resource using the Model 1/0
API.

MDLVert exDescriptor *d = [[ MDLVertexDescriptor alloc] init];
d.attributes[0] = [[MDLVertexAttribute alloc]
i ni t WthName: MDLVer t exAttri but ePosition fornmat: MDLVertexFor mat Fl oat 3
of fset: 0 bufferlndex:0];
d.attributes[1] = [[MDLVertexAttribute alloc]
i ni t WthName: MDLVer t exAttri but eNormal format: MDLVert exFor mat Fl oat 3
of fset: sizeof (vector _fl oat3) bufferlndex:0];
d.attributes[2] = [[MDLVertexAttribute alloc]
i ni t WthName: MDLVer t exAttri but eText ur eCoor di nat e
format: MDLVert exFor mat Fl oat 2 of f set: si zeof (vector _float3) * 2
buf f er I ndex: 0] ;

d.layouts[0] = [[MDLVertexBufferLayout alloc]
initWthStride: si zeof (MXVertex)];

Because we're using the Model 1/0 API, we'll also need to translate the vertex descriptor to aformat
useable by Metal.

pi pel i neDescri ptor.vertexDescriptor =
MrKMet al Vert exDescri pt or Fr omvbdel | O(d) ;

Loading the Model
We can now use Model 1/0 to load our teapot from aresource in our application.

First, we need the URL to the resource in our application's bundle:
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NSURL *nodel URL = [[ NSBundl e mai nBundl e] URLFor Resource: @t eapot"
wi t hExt ensi on: @ obj "] ;

Next, we create a mesh buffer allocator that will be used to load our asset;

MIrKMeshBuf f er Al | ocat or *al |l ocator = [[ MTKMeshBuffer Al l ocator all oc]
i nitWthDevi ce: sel f. device];

And then we load our MDLASsset from our resource:

MDLAsset *asset = [[MDLAsset alloc] initWthURL: nodel URL
vertexDescriptor:d bufferAllocator:allocator];

And finally we convert the asset into an array of meshes which will be used to render the teapot. The
resulting array of MTKMesh contains buffer data sent to the GPU for rapid rendering of our object.

sel f.teapot = [ MTKMesh newMeshesFromAsset : asset devi ce: sel f. devi ce
sourceMeshes: nil error:nil];

Updating the Vertex Shader Function

Because we've changed the vertices when loading our model we heed to update our vertex shader
function. For this example we're going to use the normal vector to populate our color to help us "see" our
teapot. Later examples will update our shader to emulate lighting effects.

vertex VertexQut vertex_main(Vertexln v [[stage_in]],
constant MXUnifornms &u
[ [ buf fer( MXVertexl ndexUni forns)]])

{
Vert exQut out;
float4 worl dPosition = u.nodel * float4(v.position,1.0);
out.position = u.view * worl dPosition;
out.color = float4(v.normal, 1.0);
return out;
}

Rendering the Model
Now that we have the model loaded in an array of meshes, we can render the array of meshes:

for (MIKMesh *nesh in self.teapot) {
MrKMeshBuf fer *vertexBuffer = [[nmesh vertexBuffers] firstbject];
[ encoder setVertexBuffer:vertexBuffer. buffer
of fset:vertexBuffer. of fset
at I ndex: 0] ;

for (MIKSubnesh *submesh in nmesh. subneshes) {

MIrKMeshBuf f er *i ndexBuffer = subnesh. i ndexBuffer;
[encoder draw ndexedPrimitives:submesh.primtiveType
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i ndexCount : subnesh. i ndexCount
i ndexType: submesh. i ndexType
i ndexBuf f er: i ndexBuf fer. buffer
i ndexBuf ferOf fset:indexBuffer.offset];

Hiding Stuff That Should Not Be Drawn.

Now if we wereto simply stop here we would get all sorts of nasty visual effects. That's because we don't
hide the back-side of the rendered image and elements that may be visually occluded by the front side of
the teapot.

We need to set a couple of flagsin order to prevent parts of the model which should not be visible from
being drawn.

There are two things we can do to hide the back side of the model: culling back-facing polygons and
enabling depth testing.

Back-Face Culling

Back face culling works by finding triangles that are "back-facing." Theideaisthat if we have al our
triangles with a clock-wise winding, if after the transformations are performed the transformed matrices
are counter-clockwise, then the polygon is facing away from us--and can be hidden before it is turned into
an array of pixels.

[ encoder set Cul | Mode: MTLCul | ModeFront];

Note: Thetrianglesin our object are stored in the reverse order expected by Metal, so we
use the flag to cull front-facing triangles.

Z-Buffer

Even with back-face culling when the teapot rotates so the handle or spout are behind the body of the
teapot they are still visible. We can resolve this problem by using z-buffering, which keeps track of the
depth associated with each pixel, overwriting pixels only if they are closer to the camera.

We first enable the depth stencil format in our view by calling setDepthStencil Pixel Format in the
MTKView. This causes the MTKView class to generate the appropriate depth texture map.

sel f. dept hStenci | Pi xel Format = MILPi xel For mat Dept h32FI oat ;

We also need to specify the depth format with the pipeline descriptor, so our graphics pipeline knows to
use depth testing. Thisindicates to the pipeline the format of the depth buffer initialized by the
MTKView:

pi pel i neDescri ptor. dept hAtt achrment Pi xel Format =
sel f. dept hSt enci | Pi xel For nat ;
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We now create a MTL DepthStencil State. This is used to indicate to the rendering pass encoder the way
the depth buffer should be used: if the depth buffer is write enabled and the compare function used to
determineif apixel iscloser.

MILDept hSt enci | Descri pt or *dept hDescri ptor = [[ MILDept hSt enci | Descri pt or
alloc] init];

dept hDescri pt or . dept hConpar eFuncti on = MILConpar eFuncti onLess;

[ dept hDescri pt or set Dept hWit eEnabl ed: YES] ;

sel f.depth = [sel f. device
newDept hSt enci | St at eW t hDescri pt or: dept hDescri ptor];

And finally we set the depth stencil state to our encoder so the rendering pass uses depth testing.
[encoder setDepthStencil State:self.depth];

Once we make al of the changes above (all uploaded at GitHub) we should see a rotating teapot:

Window

@00

Basic Lighting Effects

Of course while this shows al the basics necessary to draw in 3D, it looks terrible. We need to update our
fragment shader function in order to simulate the lighting effects you would see with alight source
reflecting off of a surface.

Note that the subject of lighting effects is an entire topic of its own. This section only adds the constants
necessary for minimal lighting effects: ambient, diffuse and specular lighting.
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Updating the Shader Vertex Values

Before we can carry out any of our lighting effects we need to update our internal structures for the vertex
data passed to our fragment shader function. We rewrite our VertexOut structure:

struct VertexQut

{
float4 position [[position]];
float3 normal ;
float2 texture;

b

We also rewrite our vertex shader function to pass the normal and texture values:

out.normal = v.normal;
out.texture = v.texture;

Ambient Lighting

Ambient lighting is the lighting of an object represented by an omni-directional fixed-intensity light
source from the background. The ambient lighting color for a polygon is given by:

color = M i

ambient

color color

Where M is the surface material's color, L is the color of the ambient light, and ambient is the brightness
of the ambient light. All values are from O to 1, and for each color channel red, green and blue, the
calculation is repeated for each color channel.

Updating the Shader With Ambient Colors

We set constants defining the color of our light, the color of the teapot, and the ambient intensity, and
return that for our fragment color:

constant float3 teapotColor(1.0,0.5,0.75);
constant float3 lightColor(1,1,1);
constant float ambientintensity = 0.1;

fragment float4 fragment_nain(VertexQut v [[stage_in]])

{
}

return fl oat4(teapotColor * |ightColor * anmbientlntensity,1.0);

Diffuse Lighting

Diffuse lighting effects alters the color of our surface depending on the relative angle of the normal of our
polygon and the light source illuminating our scene.
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This requires we know the angle of the normal vector to our light source. Fortunately we can calculate the
relative position of our normal vector and our lighting vector (which isrelative to our viewpoint) by
finding the inverse of our model matrix and passing that in to our vertex shader.

Updating Our Uniforms

We first add a new field to our Uniforms structure:

typedef struct MXUni forns
{

matri x_fl oat 4x4 nodel ;

matri x_fl oat 4x4 vi ew,

matri x_fl oat4x4 inverse; /'l inverse of nodel
} MXUni f or irs;

Next, we populate the inverse when we populate the contents of our uniforms while drawing:

u.inverse = sel f.nodel.inverseCm

Diffuse Lighting Calculations

The diffuse lighting value is given by calculating the intensity by calculating the dot product of the
normal vector with the direction to the light. (The dot product is 1 if the normal is pointed in the same
direction asthe light vector, and O if they are perpendicular.)

color = M L (N - P)

color color

We modify our vertex matrix to calculate the orientation of the normal vector by translating it according
to the inverse of the model matrix:

float4 nvect = float4(v.nornal,0) * u.inverse;
out.normal = normalize(nvect.xyz);

We then update our list of constants to give the light location:
constant float3 lightDirection(1,0,1);
and we update our shader:

fragment float4 fragment_main(VertexQut v [[stage_in]])
{
/1 Anmbient [ighting
float4 ambient = float4(teapotColor * lightColor * anbientintensity,
1.0);

/1 Diffuse lighting

float diffuselntensity = dot(v.normal,lightDirection);
di ffuselntensity = clanp(diffuselntensity,0,1);
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float4 diffuse = float4(teapotColor * lightColor * diffuselntensity,
1.0);

/1 Specular lighting

return anbient + diffuse;

Specular Lighting

The specular lighting effect simulates the reflection of alight on the surface of our object. The specular
lighting effect involves us calculating the direction the light reflects off our surface.

L =2(N-L)N-L

reflect™

We then calculate the specular intensity by calculating the dot product raised to a power. (Note that the
result of the dot product isavalue from 0to 1, so raising it to a power causes the value to be close to zero
for most dot product, going to 1 when our dot product is close to 1. Thus higher tightness val ues cause the
specular reflection to be smaller.)

K

\reflect

E) tightness

The color isthe calculated as a function of the light color, but not the surface color.

Note: One problemwith color effects is getting them right. Often things can go haywire
because of the wrong vector normal direction, or because of a sign error. If you don't get
the light effect you expect it is worth experimenting with the results until you see what
you want.

The math for calculating our specular lighting effect is given by rewriting our fragment shader function:
constant float3 teapotColor(1.0,0.5,0.75);

constant float3 lightColor(1,1,1);
constant float anmbientintensity = 0.1;
constant float3 lightDirection(1,0,1);
constant float3 eyeDirection(0,0,1);
constant float specul arTi ght ness 25;
constant float specularlintensity 0.75;

fragment float4 fragnment_nain(VertexQut v [[stage_in]])

{

const float3 normal Li ght = nornalize(lightDirection);
const float3 normal Eye = normalize(eyeDirection);

/1 Anbient lighting

float4 anbient = float4(teapotColor * |ightColor * anbientlntensity,
1.0);
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/1 Diffuse lighting

float dotprod = dot(v.nornal, nornal Li ght);

float diffuselntensity = clanp(dotprod,O0,1);

float4 diffuse = float4(teapotColor * lightColor * diffuselntensity,
1.0);

/1 Specular lighting

float3 refl = (2 * dotprod) * v.nornal - nornal Light;

float speclntensity = dot(refl, nornmal Eye);

speclntensity = clanp(speclntensity, 0, 1);

speclntensity = pow (speclntensity, specul ar Ti ght ness);

float4 specular = float4(lightColor * speclntensity *
specul arlntensity, 1.0);

return anmbient + diffuse + specul ar

}
With al of these changes (available on GitHub) we should see afinal shaded teapot:

Using Textures
Of course pink teapots can get boring fast. You can add more visual complexity to a scene by using

texture maps. This shows how to add a texture map, by loading a texture into the GPU, passing it to the
shader, and using the texture to specify the color of the triangle.
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Note that each vertex in our teapot has a texture coordinate (u,v) associated with it, so we know how a
texture will wrap around the vertices that make up our teapot.
Loading A Texture

First we need to load atexture into the GPU to render onto our teapot.

L oading the Image Into Memory

Thetextureisloaded from aresource using the MTK Texturel oader loader, which loads the texture into
an MTL Texture.

MIrKText ur eLoader *texturelLoader = [[MIKText urelLoader all oc]
i nitWthDevi ce: sel f. device];

self.texture = [textureLoader newTextureWthName: @t ext ure"

scal eFactor: 1.0

bundl e: ni |

options: @}
error:nil];

This loads our texture from the asset catalog containing our images.

Passthe Textureto Our Shader

Thetextureis passed to our GPU through the MTL RenderPassDescriptor.

[ encoder set Fragment Texture: sel f.texture atlndex: MXText ur el ndex0] ;

Update The Fragment Shader

We now heed to update our fragment shader to use the appropriate pixel in our texture.

Obtaining the Texture Parameter

In order to use our texture we need to declare the parameter in the list of parameters to our fragment
shader function:

fragment float4 fragment_nain(VertexQut v [[stage_in]],
texture2d<fl oat, access::sanple> texture
[[texture(MXTexturel ndex0)]])

In order to sample the contents of our texture we need to create a sampler, which we can do within the
shader function itself:
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constexpr sanpler linearSanpler(mp _filter::Ilinear,
mag filter::linear,
mn filter::linear);

This can also be done by using a MTL SamplerDescriptor to create an MTL SamplerState, and passing it to
the command encoder by calling the setFragmentSampl erState: atlndex: method. The sampler isthen
passed in as a parameter to our fragment shader function via a [[sampler(index)]] parameter.

Getting the Color of the Teapot

We now have the texture location for our teapot and we have the texture. We can now get the color of our
teapot at the pixel location by:

float 3 teapot Col or = texture.sanpl e(linearSanpler,v.texture).rgb;

Once we do these steps (at GitHub) we now have a textured teapot.

®0e Window

Using Stencils

Stencils provide an additional channel of data (beyond depth) which allows control over which pixels are
rendered on the screen. Originally used to allow overlaying of graphics, they can be used to achieve a
number of effectsincluding reflection. This demo will show the teapot reflected in a mirror.

In order to draw our reflected teapot we'll need to do several things.
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First, we'll need to generate two more M TL RenderPipelineState objects; one which will be used to draw
the stencil shape, another which will be used to draw a semi-transparent surface which will be our
"mirror."

Second, we'll need to create a second fragment function in order to render the semi-transparent surface.

And third we'll need to draw four objectsin total in our rendering pass: the stencil (which will be used to
clip the reflected teapot so it only draws in the mirror), the reflected teapot, the mirror surface, and the
unreflected teapot.

Initialization

There are a number of things we need to initialize so we can render our reflection.

Updating the Depth/Stencil Pixel Format

For our drawing we will use an 8-hit stencil. We will update our view's initialization to specify an 8-bit
stencil and how to clear the stencil on the start of drawing.

sel f. dept hStenci | Pi xel Format = MILPi xel For mat Dept h32F| oat _St enci | 8;
self.clearStencil = 0;

Creating our depth stencil states

Previously we only created a single depth stencil for z-buffer rendering in the setupDepthSencil State
method. We need to add two more depth stencil states. Thefirst will be used for drawing into the stencil;
pixels which pass the depth and compare functions will update the stencil value, but it won't update the
depth buffer.

dept hDescri ptor = [[ MILDept hStenci | Descriptor alloc] init];
dept hDescri pt or . dept hConpar eFuncti on = MILConpar eFuncti onLess;

MILSt enci | Descri ptor *stencil Descriptor = [[MILStencil Descriptor all oc]
init];

stenci | Descri ptor. stencil ConpareFuncti on = MILConpar eFuncti onAl ways;

stenci | Descri ptor. dept hStenci | PassOperati on = MILSt enci | Oper ati onRepl ace;

dept hDescri pt or. backFaceStencil = stencil Descri ptor;

dept hDescri ptor.front FaceStencil = stencil Descri ptor;

dept hDescri pt or. dept hWi t eEnabl ed = NO

self.drawStencil = [self.device
newDept hSt enci | St at eW t hDescri pt or: dept hDescri ptor];

The second will be used to draw only if the stencil value at a pixel location has been set; thisis how we
will make sure we only draw our reflected image inside of our mirror:

dept hDescri ptor = [[ MILDept hStenci |l Descriptor alloc] init];
dept hDescri pt or . dept hConpar eFuncti on = MILConpar eFuncti onLess;

Aug 12, 2017 Page 35 of 97



stenci | Descriptor = [[MILStencil Descriptor alloc] init];

stenci | Descri ptor. stencil ConpareFuncti on = MILConpar eFuncti onEqual ;

dept hDescri pt or. backFaceStencil = stencil Descri ptor;
dept hDescri ptor.front FaceStencil = stencil Descriptor;
dept hDescri pt or. dept hWit eEnabl ed = YES;

sel f. maskStencil = [self.device
newDept hSt enci | St at eWt hDescri pt or: dept hDescriptor];

Creating Our Pipelines

For drawing our mirror and for drawing our stencil we aso need to create two separate pipeline states.
Neither need to perform the complicated fragment calculations used to texture map our teapot, but instead

can use avery simplified fragment:

fragment float4 fragnment_mrror(VertexQut v [[stage_in]])

{
}

return float4(1,1,1,0.2);

We |load a reference to our fragment function in our setupPipeline method:

sel f.fragnment Function2 = [self.library
newrFuncti onWt hName: @fragnment_nmirror"];

We extend our first render pipeline to indicate the format of our stencil attachment:

pi pel i neDescri ptor.stencil Attachnment Pi xel Format =
sel f. dept hSt enci | Pi xel For mat ;

And we build two more pipelines; the first with a pha blending enabled. (The red elements show the

elements which enable alpha blending.)

MTLRender Pi pel i neDescri ptor *pipelineDescriptor2 =
[ MTLRender Pi pel i neDescri ptor new ;

pi pel i neDescri ptor2.vertexFunction = self.vertexFuncti on;
pi pel i neDescri ptor2.fragnment Functi on = sel f.fragment Functi on2;

pi pel i neDescri ptor2.vertexDescriptor =
MrKMet al Vert exDescri pt or Fromvbdel | O(d) ;

pi pel i neDescri ptor 2. dept hAtt achnent Pi xel Format =
sel f. dept hSt enci | Pi xel For mat ;

pi pel i neDescri ptor2.stencil Attachment Pi xel Format =
sel f. dept hSt enci | Pi xel For mat ;

pi pel i neDescri ptor2.col or Attachnents[0]. pi xel Format =
sel f. col or Pi xel For mat ;

pi pel i neDescri ptor 2. col or Attachnent s[ 0] . bl endi ngEnabl ed = YES;
pi pel i neDescri ptor2. col or Attachnent s[ 0] . r gbBl endQper ati on

MTLBI endOper at i onAdd;

pi pel i neDescri ptor2. col or Attachnent s[ 0] . al phaBl endQper ati on

MTLBI endOper at i onAdd;
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pi pel i neDescri ptor2. col or Attachnent s[ 0] . sour ceRGBBI endFact or =
MTLBI endFact or Sour ceAl pha;

pi pel i neDescri ptor2. col or Attachnment s[ 0] . sour ceAl phaBl endFact or =
MTLBI endFact or Sour ceAl pha;

pi pel i neDescri ptor2. col or Attachment s[ 0] . desti nati onRGBBI endFact or =
MILBI endFact or OneM nusSour ceAl pha;

pi pel i neDescri ptor2. col or Attachnment s[ 0] . desti nati onAl phaBl endFactor =
MILBI endFact or OneM nusSour ceAl pha;

sel f.pipeline2 = [sel f.device
newRender Pi pel i neSt at eW t hDescri pt or: pi pel i neDescri ptor2
error:nil];

The second has drawing disabled (highlighted segment in red):

MILRender Pi pel i neDescri ptor *pi pel i neDescriptor3 =
[ MTLRender Pi pel i neDescri ptor new;
pi pel i neDescri ptor 3. vertexFunction = self.vertexFuncti on;
pi pel i neDescri ptor 3. fragment Functi on = sel f.fragnment Functi on2;
pi pel i neDescri ptor3. vertexDescriptor =
MIrKMet al Vert exDescri pt or Fr omvbdel | O(d) ;
pi pel i neDescri pt or 3. dept hAt t achnent Pi xel For mat =
sel f. dept hSt enci | Pi xel For mat ;
pi pel i neDescri ptor3. stencil Attachnent Pi xel Format =
sel f. dept hSt enci | Pi xel For mat ;

pi pel i neDescri ptor 3. col or Attachnent s[ 0] . pi xel Format =
sel f. col or Pi xel For mat ;
pi pel i neDescri ptor3. col orAttachments[0].witeMask = MILCol or Wit eMaskNone;

sel f. pi pel i neNoDraw = [sel f. device

newRender Pi pel i neSt at eW t hDescri pt or: pi pel i neDescri ptor3
error:nil];

Create Our Mirror Square

Our mirror issimply a square, and we create a square with two triangles and store it in an MTLBuffer,
using the same M X Vertex structure used to store our teapot:

static const MXVertex square[] = {
{{-05 0 -05}, {0 0 11}, {-1, -1} 1},
{{-05 0 05}, {0 0 11}, {-1, 11} 1},
{{ 05 0 -05%}, {00 1}, { 1, -1} 1},
{{-05 0 05}, {0 0 11}, {-1, 11} 1},
{{ 05 0 -05%}, {00 1}, { 1, -1} 1},
{{ 05 0 05}, {0 0 1}, { 1, 11} 1},

1
self.mrror = [self.device newBufferWthBytes: square
| engt h: si zeof (squar e)
options: MILResour ceOpt i onCPUCacheMbdeDef aul t];
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Refactor Our Drawing

Because we're drawing the mesh that represents our teapot multiple times, we extract our drawing code
into a common method:

- (void)render Mesh: (NSArray<MrkKMesh *> *)nmeshArray
i nEncoder : (i d<MI'LRender CommandEncoder >) encoder

{
for (MIKMesh *nesh in neshArray) ({
MrkKMeshBuf fer *vertexBuffer = [[nmesh vertexBuffers] firstbject];
[ encoder set VertexBuffer:vertexBuffer. buffer
of fset: vertexBuffer. of fset
at I ndex: 0] ;
for (MIKSubnesh *submesh in nmesh. subnmeshes) {
MrKMeshBuf f er *i ndexBuf fer = submesh. i ndexBuffer;
[ encoder drawl ndexedPrimtives: subnmesh. prinitiveType
i ndexCount : subresh. i ndexCount
i ndexType: subnesh. i ndexType
i ndexBuf f er: i ndexBuf f er. buffer
i ndexBuf ferOf fset:indexBuffer.offset];
}
}
}

This method is sufficiently common enough it's worth copying thisinto its own method to simplify
drawing.

Drawing Our Model.

With al the pieces (the three separate pipelines, the three separate depth descriptors, our model and our
refactored drawing, we can now render the elements of our scene in our rendering pass.

Note that because we're dealing with a semi-transparent polygon, we must render the objectsin the
correct order: the upside down teapot must be rendered before the semi-transparent mirror so that the
colors of our teapot are attenuated properly.

Render the Stencil

Thefirst step isto draw the shape of our mirrored surface in the stencil buffer. We use this with the non-
drawing pipeline (so we don't draw into the color buffer or the depth buffer), and render our mirror
surface to set only the stencil buffer.

[sel f.view push];
[sel f.view translateByX:0 y:-0.55 z:0];

u.view = self.view ctm
[ encoder set VertexBytes: &
| engt h: si zeof ( MXUni f or s)
at | ndex: MXVer t exl ndexUni f or ns] ;
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[ encoder set Stencil ReferenceVval ue: 1];
[ encoder set Render Pi pel i neSt at e: sel f. pi pel i neNoDr aw] ;
[ encoder setDepthStencil State:self.drawstencil];
[ encoder set Cul | Mode: MILCul | MbdeNone] ;
[ encoder setVertexBuffer:self.mrror
offset:0

at | ndex: MXVer t exl ndexVertices];
[encoder drawPrimtives: MILPrimtiveTypeTriangle vertexStart:0
vertexCount: 6] ;

[sel f.view pop];

Thiswill set the view matrix (pushing the old CTM state in order to preserve it), and perform the
trandation to move our mirror surface down below the teapot. We then render our mirror surface, setting
the pipeline, stencil state and culling modes as required so we only draw in the stencil.

Render the Teapot

Now we render our right-side up teapot:

u.view = self.view ctm
[ encoder setVertexBytes: &u
| engt h: si zeof ( MXUni f or rs)
at | ndex: MXVer t exl ndexUni f or ns] ;

[ encoder set Render Pi pel i neSt ate: sel f. pi peline];

[ encoder set Cul | Mode: MILCul | ModeFront];

[ encoder setDepthStencil State:self.depth];

[ encoder set Fragment Texture: sel f.texture atlndex: MXText ur el ndex0] ;

[sel f render Mesh: sel f.teapot inEncoder:encoder];

Render the Reflected Teapot

Now we render the upside down teapot. We render the teapot using the depth stencil state, so we only
render in the pixels that were originally drawn above. This causes the reflected teapot to only be visible in
the mirror.

[sel f.view push];
[self.viewtranslateByX:0 y:-1.1 z:0];
[self.view scaleByX:' 1 y:-1 z:1];

u.view = self.view ctm
[ encoder setVertexBytes: &u
| engt h: si zeof ( MXUni f or rs)
at | ndex: MXVer t exl ndexUni f or nms] ;

/! scale by -1 flips the winding order, so flip the culling node.

[ encoder set Render Pi pel i neSt ate: sel f. pi peline];
[ encoder set Cul | Mode: MILCul | MbdeBack] ;
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[ encoder setDepthStencil State:self.mskStencil];
[ encoder set Fragnment Text ure: sel f.texture atlndex: MXText ur el ndex0] ;

[sel f render Mesh: sel f.teapot inEncoder:encoder];
[sel f.view pop];

Render the Mirror Surface

And finally we render the semi-transparent mirror surface. Thiswill be rendered in front of our reflected
teapot, giving it the mirror surface appearance.

[sel f.view push];
[sel f.view translateByX:0 y:-0.55 z:0];

u.view = sel f.view ctm
[ encoder setVertexBytes: & | ength: si zeof (MXUni f or ns)
at | ndex: MXVer t exl ndexUni f or ns] ;

[ encoder set Render Pi pel i neSt at e: sel f. pi peline2];
[ encoder set Cul | Mode: MILCul | ModeNone] ;
[ encoder setDepthStencil State: self.depth];
[ encoder setVertexBuffer:self.mrror
of fset:0

at | ndex: MXVer t exl ndexVerti ces];
[encoder drawPrimtives: MILPrimtiveTypeTriangle vertexStart:0
vertexCount: 6] ;

[sel f.view pop];

Once these changes have been made (at GitHub) you should see the following:
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Complex Rendering Technigues

This section covers more complex rendering techniques, including techniques which execute multiple
rendering passes or which combine compute kernels and rendering techniques for rendering the results of
asimulation.

It isworth going through these examples after going through the examples above, and they are provided
in as terse away possible so you can understand how they work and which elements of Metal are used to
execute them.

Shadow Mapping

Shadow mapping isits own complex topic, and there are several tutorials on the topic. This provides a
simple implementation which adds shadows to our rotating teapot. We start with the unreflected teapot
from the prior example.

This example will require two pass rendering: the first pass renders a shadow map from the point of view
of the light, rendering the resultsinto an off-screen texture in the GPU. The second pass uses the off-
screen texture to apply shadows to the surface of our teapot.

This demo illustrates the steps necessary in Metal, as an illustration of how Metal works. Theresult is
passable--but requires refinement if we want something that is visually pleasing.

The Shadow Rendering Pass

We must first construct al of the infrastructure for rendering our teapot from the point of view of our
light. The resulting depth map will become our shadow mask, used to test if a point on our final rendered
image isin the shadows.

Adding the Shadow Transformation Matrix to Our Uniforms

Shadow mapping works by rendering the scene's depth map from the point of view of our light. This
reguires we supply amatrix which can be used to render the scene from our light's point of view.

t ypedef struct MXUni forns
{

matri x_fl oat 4x4 nodel ;

matri x_fl oat4x4 view,

matri x_fl oat4x4 inverse; // inverse of nodel

matri x_f | oat 4x4 shadow, /'l matrix for Iight position/shadow mappi ng
} MXUni f or ns;

Defining our Shadow Shader Functions

We now need to create two new shader functions used by our shadow rendering pipeline. Since we are
rendering to the depth map but not rendering colors, our vertex and fragment shaders are quite simple.
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The vertex shader only needs to transform vertices to the destination output using the new shadow matrix.
The fragment shader does nothing.

vertex VertexQut vertex_shadow(Vertexln v [[stage_in]],
constant MXUni forns &u [[ buffer(MXVertexl ndexUni forns)]])

{ VertexQut out;
out. position = u.shadow * float4(v.position,1.0);
return out;
}
fragnment void fragment shadow VertexQut v [[stage_in]])
{
}

Setting Up Our Shadow Render Pipeline

The steps are similar to setting up our original pipeline earlier. The key differencesis that we are only
rendering to our depth map; we are not rendering to a color texture map.

First, we load our shadow shader functions:

sel f. shadowert exFunction = [self.library
newFuncti onWt hName: @ vertex_shadow'];

sel f. shadowFr agment Function = [self.library
newrFuncti onWt hName: @ fragnent _shadow'];

Next, we create our shadow pipeline, disabling rendering to the color output channel:

MILRender Pi pel i neDescri ptor *shadowPi pel i neDescriptor =
[ MTLRender Pi pel i neDescri ptor new ;

shadowPi pel i neDescri ptor.vertexFuncti on = sel f.shadowert exFuncti on;

shadowPi pel i neDescri ptor. fragnent Functi on = sel f.shadowFr agnment Functi on;

shadowPi pel i neDescri ptor. vertexDescri ptor
pi pel i neDescri ptor.vertexDescriptor;

shadowPi pel i neDescri pt or. dept hAt t achment Pi xel For mat =
MTILPi xel For mat Dept h32FI oat ;

shadowPi pel i neDescri ptor.col orAttachments[0].witeMask =
MTILCol or Wi t eMaskNone;

sel f. shadowPi pel i ne = [sel f. device
newRender Pi pel i neSt at eW t hDescri pt or: shadowPi pel i neDescri pt or
error:nil];

The Shadow Map

Our shadow map is simply the depth map from the first rendering pass generated by our shadow pipeline.
We render thisinto atexture map with format M TL Pixel FormatDepth32F| oat.

First, we create a M TLTextureDescriptor which describes the format of our texture map:
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MILText ur eDescri pt or *shadowDescri ptor = [ MILText ureDescri ptor
t ext ure2DDescri pt or Wt hPi xel For mat : MTLPi xel For mat Dept h32FI oat
wi dt h: SHADOW W DTH
hei ght : SHADOW HEI GHT

m pmapped: NJ ;

The dimensions SHADOW_WIDTH and SHADOW_HEIGHT are defined at the top of our MXView.m
file.

Note that our texture is not " mipmapped".

Before we create our texture we need to set some parameters. Because our depth map is only used by the
GPU, we need to set the storage mode as private:

shadowDescri pt or. st orageMbde = MILSt or ageModePri vat e;

We also need to set the usage of our texture. Because we're rendering to our texture we need to set the
texture as arender target. We also need to set our texture usage for reading so we can read from it in the
second rendering pass.

shadowDescri pt or. usage = MILText ur eUsageRender Tar get |
MILText ur eUsageShader Read;

Once we've set up our descriptor we can create the M TLTexture which represents our shadow map:

sel f. shadowivap = [sel f.device newTextureWthDescri ptor: shadowDescri ptor];

Rendering the Shadow Map

Our drawlnMTKView method is reorganized to make it easier to see the two rendering passes, with the
transformation matrices moved to the top of the function. First, we generate our transformations and
populate our uniforms structure as before, and we also set our shadow matrix.

Note: The shadow map population code in this example is kludged. In a more
sophisticated application you would generate the shadow map according to the location
of the light in your scene.

For our first rendering pass where we render our shadow map, we create arender pass descriptor and
populate it ourselves. Note that the store action is to store; we wish to preserve the depth map generated
for our second pass. We a so set the depth attachment texture to our shadow map, so the results of the first
passis rendered into our shadow map.

descriptor = [ MTLRender PassDescri ptor renderPassDescriptor];
descri ptor. dept hAttachnent.texture = sel f.shadowvap;

descri ptor. dept hAttachnent .| oadActi on = MILLoadActi ond ear;
descri ptor. dept hAttachnent. st oreActi on = MILSt oreActi onSt ore;
descri ptor. dept hAttachnent. cl earDepth = 1.0;

encoder = [buffer render ConmandEncoder Wt hDescri ptor: descriptor];
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Next, we set up the encoder to render using our shadow pipeline. We reuse the depth stencil state, since
our behavior for handling depth mapping is the same as for rendering our scene: our pixels are updated if
apixel iscloser to our camera (or, in this case, our light). (But since we're only rendering the depth map
and not color pixels, this meansin the end our depth map will contain the depth of the closest pixel at
each pixel location.)

[ encoder set Render Pi pel i neSt at e: sel f. shadowPi pel i nej;
[ encoder setVertexBytes: & | ength: si zeof (MXUni f or ns)
at | ndex: MXVer t exl ndexUni f or ns] ;

[ encoder setDepthStencil State: self.depth];

[sel f render Mesh: sel f.teapot inEncoder:encoder];

[ encoder endEncodi ng];

At the end of thefirst pass, we will have a depth map from the point of view of our camera.

In the image above, white is a depth of 1.0, and darker shades are pixels closer to the light. (Thiswas
captured by using the debug functionality in Xcode.)

Using the Shadow Map

Now that we have our shadow map we need to use it when rendering our scene. We do this by updating
our shaders from a prior example to add the shadow coordinates to our vertices.

Theideaisthis: instead of simply tracking the position of each vertex where the vertex will eventually be
rendered on our display, we track two positions: the position of the vertex on our display and the position
of the vertex in our shadow map. Then in the fragment shader we can determine if our pixel isin the
shadow, and adjust our colors accordingly.

Updating the Shader's VertexOut Structure

We need to add the position of our vertex in our shadow map to our VertexOut structure in our shader.

struct VertexQut
{

float4 position [[position]];
fl oat 4 shadow,
float3 nornal;
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float2 texture;

}s

Populating the Shadow Position

Our vertex shader function needs to be updated to populate the shadow field. We reuse our shadow
transformation matrix to do this:

vertex VertexQut vertex_nmain(Vertexln v [[stage_in]],
constant MXUni forns &u [[ buffer(MXVertexl ndexUniforns)]])

{
VertexQut out;
float4 worl dPosition = u.nodel * float4(v.position,1.0);
out.position = u.view * worl dPosition
out . shadow = u. shadow * float4(v.position,1.0);
float4 nvect = float4(v.nornal,0) * u.inverse;
out.nornal = normalize(nvect.xyz);
out.texture = v.texture;
return out;
}

The Second Rendering Pass

Remember: thisis a two-pass rendering operation. We've now rendered the shadow map, we next must
render our teapot. The steps are the same as above, but we also pass in our shadow map as a fragment
texture, so we can use the shadow map during rendering. (The red highlighted segment is the additional
step necessary to passin our shadow map.)

descriptor = [view current Render PassDescri ptor];
encoder = [buffer render CommandEncoder Wt hDescri ptor: descriptor];
[ encoder set Render Pi pel i neSt ate: sel f. pi peline];
[ encoder set VertexBytes: &u
| engt h: si zeof ( MXUni f or ns)
at | ndex: MXVer t exl ndexUni f or ns] ;
[ encoder setDepthStencil State:self.depth];

[ encoder setFragnment Texture:self.texture
at | ndex: MXText ur el ndexO0] ;
[ encoder set Fragnment Text ure: sel f. shadowivap
at | ndex: MXText ur el ndexShadow ;
[sel f render Mesh: sel f.teapot inEncoder:encoder];
[ encoder endEncodi ng];
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Updating Our Fragment Shader Function

We also need to modify our fragment shader function to obtain the depth from our shadow map, and
determineif the depth of the pixel we wish to render isin front of the depth from our shadow map (and
thus, visible to the light), or if it is behind the depth from our shadow map (and thus, isin the shadows).

First, we need to update our fragment shader function to add the shadow map as a parameter:

fragment float4 fragment_main(VertexCQut v [[stage_in]],
texture2d<fl oat, access::sanple> texture
[[texture(MXTexturel ndex0)]],
dept h2d<fl oat, access:: sanpl e> shadowiap
[[texture(MXText urel ndexShadow)]])

Next we need to get the depth from our shadow map. We need to do alittle math to get the correct pixel,
however. First, because our shadow field is in homogeneous coordinates, we need to calculate:

x" oy oz
(x,v,2) = ( )

W w W

Note: If we were using an orthographic projection for our light source--that is, if our
light source was at infinity, we can skip the division by w. That's because in an
orthographic projection, w = 1.

If this was the case, many of these steps to remap our shadow coordinates into texture
coordinates could be put into the vertex shader, gaining a bit of a performance gain since
we would not need to do three divisions by w, as well as addition and subtraction and
division by 2.

Thisisleft as an exercise for the reader.

Next we need to take into account that while points in our geometry coordinate system run from-1to 1
from bottom left to top right:

4 (L1)

(-1-1)
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Pixelsin our texture map run from 0 to 1 from top left to bottom right:

0.,0)

(1.1

We handle thisin our fragment shader.

float x (1 + v.shadow. x / v.shadow.w) / 2;

float y (1 - v.shadow.y / v.shadow.w) / 2;

float depth = shadowMap. sanpl e(li near Sanpl er, fl oat2(x,y));
float zd = v.shadow.z / v.shadow. w - 0.001;

At this point, zd is the depth of our current point in our shadow coordinate system, and depth is the depth
of the pixel closest to the light. (We subtract a small fudge factor in order to prevent "shadow acne.")

This meansif zd islarger than depth, our point is farther from the light, and is in the shadow.

We use this to skip cal culating the diffuse and specular lighting in our fragment shader by adding the
following line to skip those calculations:

if (zd >= depth) return anbient;

One al these changes are made (reflected in GitHub), we should see:
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The effect can be subtle, and is more apparent when running the application and watching the animation.
However, we can compare the image with a version without shadow mapping:

If you look at where the handle meets the body, you can see shadowing making the teapot |ooking more
"redlistic.”

Fairy Lights

Fairy lightsis one term for small glowing dots of lights that can dance around a scene, and this next demo
will show adding fairy lights by demonstrating two aspects of Metal: rendering with the

drawPrimitives.vertexStart:vertexCount:instanceCount: method (and modifying the vertex shader
function to deal with multiple instances of the same object), and with a vertex shader that is alittle more
interesting than just transforming pointsin 3D space.

Each fairy light is rendered as a square with a texture associated with it; the texture is semi-transparent (to
render the glowing effect).
Loading the Fairy Texture

The fairy textureitself is stored as atexture in our assets.

Our fragment shader will color the texture with the appropriate color. It's loaded a ong with the texture for
our teapot:

self.fairyTexture = [textureLoader newlextureWthNanme: @fairy"
scal eFactor: 1.0
bundl e: ni |

options: @}
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error:nil];

Setting Up the Vertices
The vertices for our fairy lights are represented as two dimensional vertices:

struct Vertexln {
float2 position [[attribute(MXAttributel ndexPosition)]];
i
(And the corresponding M XFairyVertex declaration in MXGeometry.h.)
We then define the square as two triangles:

static const MXFairyVertex square[] = {

{{-1 -1}1},
{{-1, 1}1},
{{ 1 -1}1},
{{-1, 1}1},
{{ 1 -1}1},
{{ 1 1}}

b
self.fairySquare = [sel f.device newBuffer WthBytes: square
| engt h: si zeof (squar e)
options: MILResour ceOpt i onCPUCacheMbdeDef aul t];

Setting Up the Fairy Locations

Each fairy light instance will be drawn with its corresponding fairy light record. The list of fairy lights
will be passed in with our fairy vectors, which will have the end result of duplicating our squares, once
for each fairy light record.

TheFairy Light Instance Record

Our fairy light record is:

struct FairyLightln {
float3 position;
float3 color;
float size;

float2 angl e;

fl oat speed;
float radius;

}s

(And the corresponding M X FairyL ocation declaration in MX Geometry.h)
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Initializing the Fairy Lights

Thefairy lights are stored as afixed array in our MXView record. The lights areinitialized with random
locations and rotational speeds (so they are scattered around the waist of the teapot) in the
setupFairyLights method.

Adding Our Fairy Shader Functions

We now need to create our vertex and fragment shader functions.

The Vertex Shader Function

Our vertex shader function will be invoked with a drawing method which calls the fairy vertex function
for each vertex in our box, for each instance of our fairy lights. Thiswill allow us to specify the location
of our vertices on our screen.

So in addition to the vertex location of each corner of our square and the uniforms giving the
transformations we will use to find the position of our fairy lights, we aso receive the array of fairy light
positions and an instance index that allows us to get the values for the specific instance being rendered:

vertex VertexQut vertex fairy(Vertexln v [[stage_in]],
constant MXUniforns &u [[ buffer(MXVertexl ndexUni forns)]],
constant FairyLightln *positions [[buffer(MXVertexlndexLocations)]],
uint iid [[instance_id]])

The array of fairy light positions are specified as passed in with the vertex buffers, and the specific
instance being rendered is specified with the [[instance_id]] attribute.

Note: the attributes [[instance_id]] is used to iterate through all the instances when any
version of the MTLRender CommandEncoder draw methods that specify an instance
count is called. The array of positions happens to have the same length as the range of
instance counts.

The Metal Shader specification also specifiesa [[vertex_id]] if you wish toiterate
through the verticesin a similar fashion. Both of these can be used with the
[[base_vertex]] and [[base_instance]] attributes.

Now the position of the center of each fairy light should be specified by the 3D transformed into screen
space:

float4 screenPos = u.view * u.nodel * float4(positions[iid].position,1.0);
This gives us the center of our fairy light on the screen. We then adjust the corners appropriately by using
the vertex parameter, adjusting the size by dividing by the w component of our screen position. (The w

component correlates to how far from the cameraour light is.)

screenPos. xy += v.position * 0.03 * positions[iid].size / screenPos.w,
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We then pass the screen position to our vertex shader, as well asthe UV location (for the texture map) and
the color (from the fairy lights array) to our shader:

out. position = screenPos;

out.uv = (v.position + 1)/2;
out.color = positions[iid].color;

The Fragment Shader Function

The fragment shader function adjusts the color of our texture and sets the transparency for our color.

fragment float4 fragnment fairy(VertexQut v [[stage_in]],
texture2d<float> fairyTexture [[texture(MXTexturel ndex0)]])

{
constexpr sanpler linearSanpler(mp _filter::Ilinear,
mag filter::linear,
mn filter::linear);
float4 ¢ = fairyTexture. sanpl e(linearSanpler,v.uv);
float3 color = v.color * c.x;
return float4(color,c.x);
}

Setting Up the Fairy Rendering Pipeline

Because our fairy lights are rendered as semi-transparent lights we need to create a new rendering
pipeline to handle our fairy lights.

The Fairy Attribute Descriptors

Because our fairy light vertices have a different layout than our teapot, we need to create a new
MTLVertexDescriptor describing our layout of our MXFairyVertex record:

MrLVert exDescriptor *fairyDescriptors = [[ MILVertexDescriptor alloc]
init];

fai ryDescriptors.attri butes[ MXAttri butel ndexPosition].formt =
MTILVer t exFor mat Fl oat 2;

fairyDescriptors.attributes[ MXAttri butel ndexPosition].offset = 0;

fai ryDescriptors.attributes[ MXAttri butel ndexPosition].bufferlndex = 0;

fairyDescriptors.layouts[0].stride = sizeof (MXFairyVertex);

The Fairy Attribute Pipeline State

We can now set up our pipeline. We need to set the blending options to our pipeline descriptor to handle
alphablending:

MILRender Pi pel i neDescri ptor *fairyPi pelineDescriptor =
[ MTLRender Pi pel i neDescri ptor new;
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fairyPi pelineDescriptor.vertexFunction = self.fairyVertexFunction;
fairyPi pelineDescriptor.fragnent Function = sel f.fairyFragment Functi on;
fairyPi pelineDescriptor.vertexDescriptor = fairyDescriptors;

fairyPi pelineDescriptor. dept hAttachnment Pi xel Format =

sel f. dept hSt enci | Pi xel For nat ;

fairyPi pelineDescriptor.col orAttachnents[0]. pi xel Format =

sel f. col or Pi xel For nat ;

fairyPi pelineDescriptor.col or Attachnent s[ 0] . bl endi ngEnabl ed = YES;
fairyPi pelineDescriptor.col orAttachnents[0].rgbBl endQperation =

MILBI endQper at i onAdd;

fairyPi pelineDescriptor.col or Attachnment s[0]. al phaBl endQperation =

MILBI endQper at i onAdd;

fairyPi pel i neDescriptor.col or Attachnment s[ 0] . sour ceRGBBI endFact or =
MTILBI endFact or Sour ceAl pha;

fairyPi pelineDescriptor.col or Attachnent s[ 0] . sour ceAl phaBl endFactor =
MTILBI endFact or Sour ceAl pha;

fairyPi pelineDescriptor.col or Attachnent s[0].destinati onRGBI endFactor =
MILBI endFact or OneM nusSour ceAl pha;

fairyPi pelineDescriptor.col or Attachnents[0]. desti nati onAl phaBl endFactor =
MILBI endFact or OneM nusSour ceAl pha;

sel f.fairyPipeline = [sel f.device

newRender Pi pel i neSt at eW t hDescri ptor:fairyPi pelineDescriptor error:nil];

The Fairy Depth Stencil

Fairy lights are drawn as semi-transparent objects. Thisimplies two things: we must render them after
we've rendered the other objects in our scene. And since fairy lights do not block each other (in z-order),
fairy lights should not update the depth buffer (and cause fairy lights not drawn in order to block each
other).

We can achieve the |atter part by creating a new MTL DepthStencil State:
MILDept hSt enci | Descri ptor *fairyDept hDescriptor =
[[ MILDept hSt enci | Descriptor alloc] init];
fai ryDept hDescri pt or. dept hConmpar eFuncti on = MILConpar eFuncti onLess;
[fai ryDept hDescri ptor setDepthWiteEnabl ed: NJ ;
self.fairyDepth = [sel f. device
newDept hSt enci | St at eW t hDescri ptor: fai ryDept hDescri ptor];
Rendering Our Fairy Lights

Now that we've set up our rendering pipeline and geometry, we can now render our fairy lights.

Before committing our final rendering pass to render our teapot, we add the code to update our fairy light
positions, then passin the information to draw our fairy lights:

for (int i =0; i < MAX_FAIRYLIGHTS, ++i) {
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}

[ encoder
[ encoder
[ encoder

[ encoder
[ encoder

[ encoder

[ encoder

Update our fairy light |ocations.

set Render Pi pel i neSt ate: sel f.fairyPi peline];
set Dept hStenci | State: sel f.fairyDepth];
set VertexBuf fer:sel f.fairySquare
offset:0
at | ndex: MXVer t exl ndexVertices];
set Vert exBytes: fairyLights
| engt h: si zeof (fairyLi ghts)
at | ndex: MXVer t exl ndexLocat i ons] ;
set Fragnent Text ure: sel f. fai ryTexture atl ndex: MXText ur el ndex0] ;
drawPrimtives: MILPrimtiveTypeTriangle
vertexStart: 0
vertexCount: 6
i nst anceCount : MAX_FAI RYLI GHTS]

endEncodi ng] ;

Note the line highlighted in red is how we request we render multiple instances of the same vertex array.

When all of thisis put together (as noted in GitHub), we should get fairy lights:

Deferred Shading

The problem with our fairy lightsis that we don't see their illumination reflected on the surface of our
teapot. We can add this effect by using deferred shading.

In essence, instead of rendering our teapot to the on-screen display, we render our teapot to an off-screen
buffer. We also render other information we need to properly calculate our lighting effects (such asthe
normal vector for each visible pixel) into separate buffers--collectively known as a Geometry Buffer or G-
Buffer. With the information in our G-Buffer we can then calculate the lighting effects for each of our
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lights, and limit the lighting effect so we only add the light from each fairy light that is close to the pixels
to be updated.

Because the purpose of thisdemo istoillustrate the parts of Metal required to execute Deferred Shading,
some of this presentation won't be as optimal as possible. Further, as these demos target the Macintosh,
we won't take advantage of Raster Order Groups, as used in Apple's Deferred Lighting example.

Generating the G-Buffer

Thefirst phase of our changes will split our rendering pipeline into two phases: one which generates the
G-Buffer and one which uses the G-Buffer to perform our lighting calculations.

Our lighting calculations (from above) require the color of each pixel in the teapot and the normal vector;
from that, we cal culate the shaded colors of our teapot.

Note: Different shading effects may require different values to be calculated in the first
phase, to be carried over to the second phase in our G-Buffer. For example, Apple's
deferred lighting exampl e calculates albedo and specular information rather than color
information, then obtains the texture map color information at a later rendering pass.

Create the GBuffer

Thefirst rendering pass for our G-Buffer system generates our G-Buffer. While the vertex_gbuffer vertex
shader function remains the same as the prior vertex_main vertex buffer from above, the second half
which renders our fragment is modified to render our G-Buffer instead.

We declare our G-Buffer:

struct GBufferQut

{
float4 col or [ [ col or ( MXCol or | ndexCol or) ]

l;
float4 normal [[ col or (MXCol or I ndexNormal )17;
b

The [[color(N)]] attribute is associated with the colorAttachment array of the M TL RenderPassDescriptor.
It allows us to write multiple color channels at the same time.

In this case we're writing to two texture maps. The first will contain the color of our object as (r,g,b), and
the alpha channel contains the shadow (with 0 meaning the pixel isin ashadow and 1 meaning it is not).
The second will contain our transformed normal vector in (r,g,b), and the alpha channel isignored.

Our fragment shader which rendersinto our G-Buffer should seem familiar asit isthefirst half of our
prior fragment_main fragment shader function, but instead of calculating our lighting effects we put our
intermediate values into our output buffer.

fragment GBufferQut fragnent gbuffer(VertexQut v [[stage_in]],
t exture2d<fl oat, access::sanple> texture
[[texture(MXTexturel ndex0)]],
dept h2d<f| oat, access::sanpl e> shadowvap
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[[texture(MXText urel ndexShadow)]])

{
const expr sanpler linearSanpler (mp_filter::linear,
mag filter::linear,
mn filter::linear);

float x = (1 + v.shadow. x / v.shadow.w) / 2;
float y = (1 - v.shadow.y / v.shadow.w) / 2;
float depth = shadowMap. sanpl e(li near Sanpl er, fl oat2(x,y));
float zd = v.shadow. z / v.shadow. w - 0.001;
/*

* Generate the GBuffer

*

/
GBuf ferQut out;
/1 Texture col or
float 3 teapot Col or = texture.sanpl e(linearSanpler,v.texture).rgb;
out.color = float4(teapotColor, (zd >= depth) ? 0 : 1);
/1 Normal vector
out.nornal = float4(v.nornal, 0);
return out;
}

Creating our GBuffer rendering pipeline

We now load our new shader functions:

sel f.gVertexFunction = [self.library

newFuncti onWt hName: @vertex_gbuffer"];
sel f. gFragnent Function = [self.library

newFuncti onW t hName: @ fragment _gbuffer"];

The rendering pipeline will then make use of our new vertex functions, and must also specify the format
of our color attachments:

MILRender Pi pel i neDescri pt or *gBufferPi pelineDescriptor =
[ MTLRender Pi pel i neDescri ptor new;
gBuf f er Pi pel i neDescri ptor.vertexFunction = sel f.gVertexFuncti on;
gBuf f er Pi pel i neDescri ptor. fragnent Functi on = sel f. gFragnment Functi on;
gBuf f er Pi pel i neDescri ptor.col or Attachments[0]. pi xel Format =
MTLPi xel For mat RGBAL6FI oat ;
gBuf f er Pi pel i neDescri ptor.col or Attachments[1]. pi xel Format =
MTLPi xel For mat RGBA32FI oat ;
gBuf f er Pi pel i neDescri ptor.vertexDescriptor =
MIrKMet al Vert exDescri pt or Fromivbdel | O(d) ;
gBuf f er Pi pel i neDescri pt or. dept hAtt achnment Pi xel Format =
MTILPi xel For mat Dept h32FIl oat _St enci | 8;
gBuf f er Pi pel i neDescri ptor. stencil Attachnment Pi xel Format =
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MILPi xel For mat Dept h32FIl oat _St enci | 8;

sel f.gPi peline = [sel f.device
newRender Pi pel i neSt at eW t hDescr i pt or: gBuf f er Pi pel i neDescri ptor
error:nil];

Creating our Stencil

We also use a stencil in our G-Buiffer, to note the pixels that are being rendered to. This way we can skip
the mgjority of the screen that does not contain ateapot. (Thisisimportant so we can bypass doing
lighting calculations where they are not necessary.)

Our drawing stencil sets the stencil value to a non-zero value as we render.

MILDept hSt enci | Descri pt or *drawSt enci | Descri ptor =

[ [ MILDept hSt enci | Descriptor alloc] init];

dr awSt enci | Descri pt or. dept hConpar eFuncti on = MILConpar eFuncti onLess;
[drawSt enci | Descri ptor set Dept hWit eEnabl ed: YES] ;

MILSt enci | Descri ptor *drawStencil = [[MILStencil Descriptor alloc] init];
drawsSt enci | . st enci | Conpar eFuncti on = MILConpar eFunct i onAl ways;

drawsSt enci | . dept hSt enci | PassOperati on = MILSt enci | Oper ati onRepl ace;
drawsSt enci | Descri pt or. backFaceStencil = drawStencil;

drawsSt enci | Descri ptor.front FaceStencil = drawStencil;
self.drawStencil = [self.device

newDept hSt enci | St at eW t hDescri pt or: drawSt enci | Descriptor];

Allocating the G-Buffer Textures

Our G-Buffer textures are the same dimensions as our screen. We use calls to
mtkView: drawableS zeWilIChange: in order to allocate and resize our textures as the screen is created and
asit isresized. The textures are then updated in the setupGBuffer TextureWithS ze: method call.

MILText ur eDescri pt or *gbuf f er Descri ptor;

/1 Col or map

gbuf f er Descri ptor = [ MILText ureDescri ptor

t ext ure2DDescri pt or Wt hPi xel For mat : MTLPi xel For mat RGBA16FI oat

wi dt h: si ze.wi dth hei ght: size. hei ght m pnapped: NJ ;

gbuf f er Descri pt or. st orageMode = MILSt or ageMbdePri vat e;

gbuf f er Descri pt or. usage = MILText ur eUsageRender Tar get |

MILText ur eUsageShader Read;

sel f.col orMap = [sel f.device newText ureWthDescri ptor: gbufferDescriptor];

/1 normal vectors

gbuf f er Descri ptor = [ MILText ureDescri pt or

t ext ure2DDescri pt or Wt hPi xel For mat : MTLPi xel For mat RGBA32FI oat
wi dt h: si ze.wi dth hei ght: size. hei ght m pnmapped: NJ ;

gbuf f er Descri pt or. st orageMode = MILSt or ageMbdePri vat e;
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gbuf ferDescri ptor.usage = MILText ureUsageRender Tar get |
MILText ur eUsageShader Read;

sel f.normal Map = [sel f.devi ce newTextureWthDescri ptor: gbufferDescriptor];

Note that we use a different format for our colors than for our normals, so we can preserve the maximum

resolution possible for our normals. Of course in practice you would fiddle with these parameters to
balance saving memory and graphical resolution.

Also note that sometimes on MacOS, the drawlnM TKView method may be called prior to our resize
method being called. If this happens we need to skip drawing, as the GBuffer textures have not been
initialized yet:

if (self.colorMap == nil) return;

Rendering our G-Buffers

We now can render our G-Buffer. Note that the depth and stencils we use for rendering is the same as the

depth and stencil rendering textures used by our view.
First, we set up our descriptor:

descri ptor = [ MTLRender PassDescri ptor renderPassDescriptor];
descri ptor. dept hAttachnent.texture = sel f.depthStencil Texture;
descri ptor. dept hAttachnent. | oadActi on = MILLoadActi ond ear;
descri ptor. dept hAttachnent. st oreActi on = MILSt or eActi onSt or e;
descri ptor. dept hAttachnent. cl earDepth = 1.0;

descriptor.stencil Attachment.texture = self.depthStencil Texture;
descriptor.stencil Attachment. | oadActi on = MILLoadActi ond ear;
descriptor.stencil Attachment.storeAction = MILSt or eActi onSt or e;
descriptor.stencil Attachnent.clearStencil = 0;

descri ptor. col or Att achnent s[ MXCol or I ndexCol or].texture = sel f. col or Map;
descri ptor. col or Att achnent s[ MXCol or I ndexCol or] . cl ear Col or =
MILCl ear Col or Make(0.1, 0.1, 0.2, 1.0);
descri ptor. col or Att achnent s[ MXCol or I ndexCol or] .| oadAction =
MILLoadAct i onCl ear;
descri ptor. col or Att achnent s[ MXCol or I ndexCol or] . storeAction =
MTLSt or eAct i onSt or e;

descri ptor. col or Att achnent s[ MXCol or I ndexNor mal ] . texture = sel f. nor mal Map;

descri ptor. col or Att achnent s[ MXCol or | ndexNor mal ] . cl ear Col or =
MILCl ear Col or Make(1, 0, 0, 0);

descri ptor. col or Att achnent s[ MXCol or | ndexNor mal ] .| oadAction =
MILLoadAct i onCl ear;

descri ptor. col or Att achnent s[ MXCol or | ndexNor mal ] . storeAction =
MTLSt or eAct i onSt or e;

encoder = [buffer render ConmandEncoder Wt hDescri ptor: descriptor];

Next we set the graphics pipeline, the matrices (for transformation), the drawing stencil and other
attributes to render our teapot into the G-Buffer:

[ encoder set Render Pi pel i neSt at e: sel f. gPi peline];
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[ encoder set VertexBytes: & | ength: si zeof (MXUni f or ns)

at | ndex: MXVer t exl ndexUni f or ns] ;

[ encoder setDepthStencil State:self.drawstencil];

[ encoder set Stencil ReferenceVval ue: 1];

[ encoder set Fragnment Texture: sel f.texture atlndex: MXText ur el ndex0] ;

[ encoder set Fragnent Text ure: sel f. shadowMap at | ndex: MXText ur el ndexShadow] ;
[sel f render Mesh: sel f.teapot inEncoder:encoder];

[ encoder endEncodi ng];

Rendering the Image from the G-Buffer

At this stage we have the color, normal and shadow information stored in two off-screen textures. We
need to perform a second pass in order to render our scene, which performs the lighting calculations on a
per-pixel basis.

Thisis performed as a second rendering pass.

Declare Our Rendering Shaders

In order to render the pixels we will ultimately render a square that covers the entire screen. Thiswill
trigger our fragment shader function to render al of the pixels on our screen (that are part of our stencil).

Our vertex shader isvery ssimple: it takes atwo-dimensional vertex representing the corners of our screen,
and outputs a vertex output structure which contains both the u/v coordinates of our color and normal
textures, and the x/y location on our screen.

struct Vertexln {

float2 position [[attribute(MXAttri butel ndexPosition)]];
b
struct VertexQut ({
float4 position [[position]];
float2 uv;
float2 xy;
b
vertex VertexQut vertex_grender(Vertexln v [[stage_in]])
{
VertexQut out;
out.position = float4(v.position,O,1);
out.xy = v.position;
out.uv = float2((1 + v.position.x)/2,(1 - v.position.y)/2);
return out;
}

Note: We passin the (x,y) parameter because when the position is passed to our fragment
shader in the [[position]] parameter, it is scaled to pixel coordinates. So if we wish to
preserve the pre-pixel coordinates, we need to pass the parametersin separately.
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We also performthe (u,v) coordinate transformation here in order to accelerate the
conversion process to the texture coordinates used to access our color and normal
vectors. That's required because while we are passed in the pixel coordinates, we access
our textures using coordinatesin the range (0,1).

The fragment shader contains all the code we previously used to calculate our diffuse and specular

lighting effects:
constant float3 lightColor(1,1,1);
constant float anbientintensity = 0. 1;
constant float3 lightDirection(1,0,1);
constant float3 eyeDirection(0,0,1);
constant float specul arTi ght ness = 25;
constant float specularlntensity = 0.75;
fragment float4 fragnment _grender(VertexQut v [[stage_in]],

t exture2d<fl oat, access::sanple> color
[[texture(MXTexturel ndexColor)]],

t ext ure2d<fl oat, access::sanpl e> nor nal
[[texture(MXTexturel ndexNormal)]],

dept h2d<f | oat, access::sanpl e> depth
[[texture(MXTexturel ndexDepth)]])

const expr sanpler linearSanpler (mp_filter::linear,

const
const

/*

*

*/

fl oat
fl oat
fl oat

/*

*

*/

mag filter::linear,
mn filter::linear);

CGet the color and run our color calculations for our basic
lighting effects

float3 nornal Light = normalize(lightDirection);
float3 nornmal Eye = nornalize(eyeDirection);

Get our values fromthe gbuffer for lighting calculations

3 teapot Col or = col or. sanpl e(li near Sanpl er, v. uv).rgb;
shadow = col or. sanpl e(l i near Sanpl er, v. uv). a;
3 teapot Normal = nornalize(normal.sanpl e(linearSanpl er,v.uv).xyz);

Calculate lighting effects for primary lighting

/1 Anbient |ighting
float4 ambient = float4(teapotColor * IightColor * anbientlintensity,
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/1 Diffuse lighting

float dotprod = dot(teapotNornal, nornal Li ght);

float diffuselntensity = clanp(dotprod, 0,1) * shadow,

float4 diffuse = float4(teapotColor * lightColor * diffuselntensity,
1.0);

/1 Specular lighting
float3 refl = (2 * dotprod) * teapotNormal - nornal Li ght;
float speclntensity = dot(refl, nornmal Eye);
speclntensity = clanp(speclntensity, 0, 1);
speclntensity = pow (speclntensity, specul arTi ght ness) * shadow,
float4 specular = float4(lightColor * speclntensity *
specul arlntensity, 1.0);

return anbient + diffuse + specul ar;

Creating our Stencil Descriptor

We use the stencil in the prior pass to skip processing pixels that do not need to be processed:

MrLDept hSt enci | Descri ptor *maskSt enci |l Descriptor =

[[ MILDept hSt enci | Descriptor alloc] init];

maskSt enci | Descri pt or. dept hConpar eFuncti on = MrLConpar eFuncti onLess;
[ maskSt enci | Descri ptor setDept hWiteEnabl ed: NJO ;

MTLSt enci | Descri ptor *maskStencil = [[MILStencil Descriptor alloc] init];
maskSt enci | . st enci | Conpar eFuncti on = MILConpar eFuncti onEqual ;

maskSt enci | Descri pt or. backFaceSt encil = maskStencil;

maskSt enci | Descri ptor.front FaceStencil = naskStencil;

sel f. maskStencil = [self.device

newDept hSt enci | St at eW t hDescri pt or: naskSt enci | Descriptor];

Creating our Graphics Pipeline

We also need to create a new graphics pipeline with our shaders:

sel f.grVertexFunction = [self.library

newFuncti onWt hNanme: @vertex_grender"];
sel f. grFragment Function = [self.library

newkFuncti onW t hName: @ f ragment _grender"];

MILRender Pi pel i neDescri ptor *grBufferPipelineDescriptor =
[ MTLRender Pi pel i neDescri ptor new ;
gr Buf f er Pi pel i neDescri ptor.vertexFunction = sel f.grVertexFuncti on;
gr Buf f er Pi pel i neDescri ptor. fragnent Functi on = sel f.grFragnment Functi on;
gr Buf f er Pi pel i neDescri ptor. col or Attachnents[ 0] . pi xel Format =
sel f. col or Pi xel For mat ;
gr Buf f er Pi pel i neDescri ptor.vertexDescriptor = fairyDescriptors;
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gr Buf f er Pi pel i neDescri pt or. dept hAtt achnent Pi xel For mat =
MTILPi xel For mat Dept h32FIl oat _St enci | 8;

gr Buf f er Pi pel i neDescri ptor. stencil Attachnent Pi xel Format =
MTILPi xel For mat Dept h32FIl oat _St enci | 8;

sel f.grPipeline = [sel f.device
newRender Pi pel i neSt at eW t hDescr i pt or: gr Buf f er Pi pel i neDescri pt or
error:nil];

Rendering Our Scene

We can now render our scene using our shader into our screen.

descriptor = [view current Render PassDescriptor];

descri ptor. dept hAttachnent. | oadActi on = MILLoadActi onLoad,;
descriptor.stencil Attachment. | oadActi on = MILLoadAct i onLoad,;
encoder = [buffer render ConmandEncoder Wt hDescri ptor: descriptor];

[ encoder setRender Pi pelineState: self.grPipeline];

[encoder set Stencil ReferenceVal ue: 1];

[encoder setVertexBuffer:self.square offset:0

at | ndex: MXVert exl ndexVerti ces];

[ encoder setDepthStencil State:self. maskStencil];

[ encoder set Fragment Texture: sel f. col or Map at | ndex: MXText ur el ndexCol or];
[encoder setFragnent Texture: sel f.normal Map at | ndex: MXText ur el ndexNor mal ] ;
[ encoder set Fragment Texture: sel f.depthStencil Texture

at | ndex: MXText ur el ndexDept h] ;

[encoder drawPrinmitives: MILPrimitiveTypeTriangle vertexStart:O0

vert exCount: 6] ;

At this stage, if you were to run our code (available on GitHub) you would see--well pretty much the
same thing as you've seen in the prior example above.

That's because we've done alot of work to separate geometry from shading--but then we've done nothing
with our geometry.
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This, however, isagood checkpoint to make sure that we are in fact populating and using our G-Buffer
correctly. If we use Xcode and look at the debugger we can see the steps our system is using to compose

our scene:

olor0:...26d10

RGBA6Float

B32x832

5.70 Mi8

Clear/Store

Depth:...c194c0

RenderCommandEncoder
0 @ 0-0 Ox104060c00

| 2

Depth32Fioat

¥

024x1024

4,06 MIB

Clear/Store

0

Color1:...b26130

RenderCommandEncoder
1@ 0-0 0x104016600

Depth:...Stencil Stencil...Stencil

wr

.

RGBA32Float Depth3.. tencis Deptn3.. tencis
832x832 B32x832 832x832

11.38 M8 4.45 MmiB 4.44 miB
Clear/store Clear/Store Clear/Store
N/A

2

RenderCommandEncodar
0 2 @ 0-0 0x104083¢00

&

BGRASUNOrmM

832x832

N/A

Clear/Store

Depth3..tencilg

B32x832

4,44 M8

Load/DontCare

Depthd...tencls
832x832
4.4a wiB

Load/DontCare

This can be avery powerful tool to help visualize the steps used in rendering a scene.

At this point you may be thinking "sure, we've done al this work--but so what?'

Thething is, now that we have the geometry of the scene we can use it to help efficiently illuminate our
fairy lights as they dance around our teapot.
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For each fairy light we render a square that is (approximately) the range of pixels that would be
illuminated by our fairy light. We then calculate the (x,y,z) location of our teapot by using an inverse
transformation, and use that information to calculate how brightly the fairy light will illuminate the
surface.

Adding the Glowing Lights

For usto properly calculate the intensity of the glow on the teapot added by afairy light, we need to
obtain the (x,y,z) position of a pixel on the screen. There are two ways we can handle this. Thefirst is by
storing the (x,y,z) location of each pixel in our G Buffer. The advantage is that this is extremely fast--but
it has the disadvantage of requiring significantly more memory.

The other way isto use an inverse transformation matrix to translate from screen space back to model

space. This has the disadvantage of requiring afull matrix multiply per pixel. We will use the second
option.

Adding the View Inverse

We add the inverse of the view matrix to our uniforms.

t ypedef struct MXUni forns

{

matri x_fl oat 4x4 nodel ;

matri x_fl oat4x4 view,

matri x_fl oat 4x4 inverse; /1 inverse of nodel

matri x_fl oat4x4 vinverse; /'l inverse of view

matri x_f | oat 4x4 shadow, /1 matrix for shadow nmappi ng
} MXUni f or ns;

Adding the Shader Functions

The shader functions for our fairy light illumination shaders cal cul ates the amount each fairy light
illuminates our teapot. The vertex shader provides the position of each light in model space, the screen
position and coordinates on our G-Buffer texture map, and the color of each fairy light. It's similar to our
fairy light vertex shader, but it passes more information so we can calculate our illumination.

Note that each fairy light illumination areais constrained by an area about 5 times bigger than the fairy
light itself. The assumption isthat the visible part of the illumination from our lights will only contribute
to afinite volume around our fairly light--so we do not need to perform a shading calculation for the
entire teapot--just a small area around the light where the teapot is close to the light.

vertex VertexQut vertex_illumination(Vertexln v [[stage_in]],
constant MXUniforms &u [[buffer(MXVertexl ndexUniforms)]],
constant FairyLightln *positions
[ [ buffer(MXVertexl ndexLocations)]],
uint iid [[instance_id]])

VertexQut out;
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/1 Transformlocation and of f set

float4 worl dPos = u.nodel * float4(positions[iid].position,1.0);
float4 screenPos = u.view * worl dPos;

/1 Ofset the X/'Y location. Note this is 5 tinmes bigger than with
/1 the fairy light shaders.

screenPos. xy += v.position * 0.15 * positions[iid].size;

out. position = screenPos;

float2 screenXY = screenPos. xy / screenPos. w,

/1 Pass through position, adjust for screen texture. Pass col or
out.lightPos = worl dPos. xyz;

out.xy = screenXyY;

out.uv = float2((1 + screenXY.x)/2,(1 - screenXY.y)/2);
out.color = positions[iid].color;

return out;

}

The illumination fragment shader function calculates the (x,y,z) position of each point on the screen,
giving us the position of the point on the teapot. It then calcul ates the square of the distance (to attenuate
the light as the point gets farther) as well as the dot product between the vertex pointing to the light and
the normal of the teapot.

These are then used to calculate the illumination added by the light (by virtue of changing the alpha
channel of the returned color).

fragment float4 fragnment illum nation(VertexQut v [[stage_in]],

constant MXUni forns &u [[ buffer(MXVertexl ndexUniforns)]],

t exture2d<fl oat, access::sanple> color
[[texture(MXTexturel ndexColor)]],

t ext ure2d<fl oat, access::sanpl e> nor nal
[[texture(MXTexturel ndexNormal)]],

dept h2d<f | oat, access::sanpl e> depth
[[texture(MXTexturel ndexDepth)]])

{
const expr sanpler linearSanpler (mp_filter::linear,
mag filter::linear,
mn filter::linear);

float z = depth. sanpl e(linear Sanpl er, v.uv);
float4 pos = floatd(v.xy,z, 1);
fl oat4 spos u.vinverse * pos;

fl oat 3 ppos Spos. Xxyz |/ spos.w,

/*

* Grab col or, normal

*/

float3 teapotNormal = normalize(nornal.sanple(linearSanpler,v.uv).xyz);
/*

* Find distance to the Iight
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*/

float3 delta = v.lightPos - ppos;
float r2 = dot(delta,delta) * 100;
if (r2 <1) r2 =1,

else r2 = 1/r2;

if (r2 <0.01) r2 = 0;

fl oat 3 posvec
float diffuse

normal i ze(delta);
cl anp(dot (posvec, teapotNornmal) * r2, 0, 1);

return float4(v.color,diffuse);

Createthelllumination Pipeline

Of course with new shader functions we need a new pipeline state. We also need to set the pipeline state
for alpha blending, as our lights are blended with the color of the teapot.

MILRender Pi pel i neDescri ptor *fairyLi ghtPi pelineDescriptor =
[ MTLRender Pi pel i neDescri ptor new ;
fairyLi ght Pi pel i neDescriptor.vertexFunction =
sel f. fairyLi ght VertexFuncti on;
fairyLi ght Pi pel i neDescri ptor.fragnment Functi on
sel f. fairyLi ght Fragnent Functi on;
fairyLi ght Pi pel i neDescriptor.vertexDescriptor = fairyDescriptors;
fairyLi ght Pi pel i neDescri ptor. dept hAttachnent Pi xel Format =
sel f. dept hSt enci | Pi xel For nat ;
fairyLi ght Pi pel i neDescriptor.stencil Attachnent Pi xel Format =
sel f. dept hSt enci | Pi xel For nat ;
fairyLi ght Pi pel i neDescriptor.col or Attachnents[0]. pi xel Format =
sel f. col or Pi xel For mat ;

fairyLi ght Pi pel i neDescri ptor. col or Attachnent s[ 0] . bl endi ngEnabl ed = YES;

fairyLi ght Pi pel i neDescriptor.col or Attachnents[0].rgbBl endQperation =
MILBI endQper at i onAdd;

fairyLi ght Pi pel i neDescriptor.col or Attachnents[0]. al phaBl endQperation =
MILBI endQper at i onAdd;

fairyLi ght Pi pel i neDescri ptor.col or Attachnents[ 0] . sour ceRGBBI endFactor =
MILBI endFact or Sour ceAl pha;

fairyLi ght Pi pel i neDescri ptor. col or Attachnent s[ 0] . sour ceAl phaBl endFactor =
MILBI endFact or Sour ceAl pha;

fairyLi ght Pi pel i neDescri ptor.col or Attachnent s[ 0] . desti nati onRGBBI endFact or

= MILBI endFact or OneM nusSour ceAl pha;

fairyLi ght Pi pel i neDescri ptor.col or Attachnents[0].destinati onAl phaBl endFact

or = MILBI endFact or OneM nusSour ceAl pha;

sel f.fairyLight Pipeline = [sel f.device

newRender Pi pel i neSt at eW t hDescri ptor: fairyLi ght Pi pel i neDescri ptor
error:nil];
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Createthe Depth Stencil State

We also need to create a new depth stencil state. The new state should ignore the z-buffer, but mask
against the stencil (which is set only where the teapot is being drawn). This allows us to calculate the
illumination for each light asiit is added to the teapot.

Also note that we ignore the z-buffer depth because the visibility components of our calculations have
already been performed.

MILDept hSt enci | Descri ptor *illum nationStencil Descriptor =
[[ MILDept hSt enci | Descriptor alloc] init];

illum nationStencil Descri ptor. dept hConmpar eFunction =
MILConpar eFunct i onAl ways;

[i1lum nationStencil Descriptor setDepthWiteEnabl ed: NJ ;

MILSt enci | Descriptor *illum nationStencil = [[MILStencil Descriptor all oc]
init];
um nationStencil . stencil Conpar eFuncti on = MILConpar eFuncti onEqual

ill
illum nationStencil Descriptor. backFaceStencil = illuninationStencil
illum nationStencil Descriptor.frontFaceStencil = illumninationStencil
self.illum nationStencil = [self.device
newDept hSt enci | St at eWt hDescriptor:illum nationStencil Descriptor];

Rendering the lllumination

We render the illumination from our sprites after we've rendered the teapot but before the fairy lights
themselves. The code passes in our G-Buffer to our shader so the appropriate lighting cal culations can be
performed.

[encoder setRender PipelineState: self.fairyLightPipeline];
[ encoder setDepthStencil State:self.illuninationStencil];
[encoder setVertexBuffer:self.square
of fset:0
at | ndex: MXVer t exl ndexVerti ces];
[ encoder set VertexBytes: &
| engt h: si zeof (MXUni f or nrs)
at | ndex: MXVer t exl ndexUni f or ms] ;
[encoder setVertexBytes:fairyLights
I engt h: si zeof (fai ryLi ghts)
at I ndex: MXVer t exl ndexLocat i ons] ;
[ encoder set Fragment Text ure: sel f. col or Map
at | ndex: MXText ur el ndexCol or];
[ encoder set Fragnent Text ure: sel f. nor nal Map
at | ndex: MXText ur el ndexNor nal ] ;
[ encoder set Fragment Texture: sel f. depthStencil Texture
at | ndex: MXText ur el ndexDept h] ;
[encoder drawPrinitives: MILPrimtiveTypeTriangle
vertexStart: 0
vertexCount: 6
i nst anceCount : MAX_FAI RYLI GHTS] ;
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Once we make the changes (which are also available on GitHub), we should see:

The effect is subtle but noticeable.

Updating the Fairy Lights using a Compute Kernel

The next example uses a compute kernel to update the location of the fairy lights. While thisisan
extremely simplistic example, it does show how we can mix a compute kernel (where the GPU performs a
complex calculation) with rendering.

The point of this demo is to show creating a compute kernel and mixing it with arendering kernel. The
calculation of the lights around the teapot is exceedingly trivial, but demonstrates a process that can be
applied to a much more computationally interesting simulation.

Creating the Compute Kernel

The compute kernel is executed once per thread, in the same way that a vertex function is executed once
per vertex or afragment function is executed once per pixel.

Adding Elapsed Timeto the Uniforms

Our compute kernel takesin the array of fairy light locations, and updates the position depending on the
elapsed time. The elapsed time is passed in as part of our uniforms structure:

typedef struct MXUni f orns
{
fl oat aspect;
fl oat el apsed;
matri x_fl oat 4x4 nodel ;
matri x_fl oat 4x4 view,
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matri x_fl oat4x4 inverse; /1 inverse of nodel

mat ri x_fl oat 4x4 vi nver se; /1 inverse of view

matri x_fl oat 4x4 shadow, /1 matrix for light position
} MXUni f or ns;

TheFairy Light Kernel

The kernel calculates the location of each of our fairy lights. It's basically the code we had used
previoudly to compute the location of our lights:

kernel void fairy_ kernel (device MXFairylLocation *positions
[ [ buf fer(MXVertexl ndexLocations)]],
constant MXUni forms &u
[ [ buf fer(MXVertexl ndexUni forns)]],
uint ix [[thread position_in_grid]])

{
devi ce MXFairylLocation *loc = positions + ix;
float a = loc->angle[0] + |oc->speed * u.el apsed,;
float sx = sin(a);
float cx = cos(a);
float sy = sin(loc->angle[1l]);
float cy = cos(loc->angle[1]);
| oc->position = float3(cx * cy * |oc->radius,
sy * |oc->radi us,
sXx * cy * |loc->radius);
}

Note: the attribute [[thread position_in_grid]] givesthe index of the kernel ina 1D, 2D

or 3D array of threads. There are other techniques that can be used to refer to the
location of a compute thread.

Initializing for Our Compute Pipeline
We need to update our fairy light locations so they are stored in the GPU. We al so need to create our

compute pipeline to update our locations.

Copying the Fairy Light L ocationsto the GPU

We create anew MTLBuffer to store the data used by our compute kernel:
sel f.fkBuffer = [sel f.device newBufferWthBytes: fairyLights

| engt h: si zeof (fairyLi ghts)
options: MILResour ceOpt i onCPUCacheMbdeDef aul t];
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Creating the Compute Pipdine State

Creating a compute pipeline is significantly simpler than a rendering pipeline, as our compute pipeline
only requires the compute kernel function.

sel f.fkFunction = [self.library newFuncti onWthNanme: @fairy_kernel "];
sel f.fkPi peline = [sel f.device
newConput ePi pel i neSt at eWt hFuncti on: sel f. fkFunction error:nil];

Executing the Compute Kernel

Instead of running our calculations on the CPU then copying the results into the GPU per frame, we can
now run the calculation code on our GPU.

Obtaining the Compute Command Encoder

We first obtain a MTL ComputeCommandEncoder, which like its MTL RenderCommandEncoder is used
to initialize the parameters used to run our compute kernel. Our compute kernel does not require a
descriptor to obtain, so the call isvery simple:

conpute = [buffer conputeCommandEncoder];

Setting the Parameters

The compute command encoder must be passed in our parameters. the array of lights whaose positions
need updating, and the uniform (which contains our elapsed time). We must also provide areference to
our compute pipeline state:

[comput e setBuffer:self.fkBuffer
of fset: 0
at | ndex: MXVer t exl ndexLocat i ons];
[ comput e setBytes: &u
| engt h: si zeof (MXUni f or nrs)
at | ndex: MXVer t exl ndexUni f or ms] ;
[ comput e set Conput ePi pel i neSt ate: sel f. fkPi peline];

Selecting our Thread Group Size and our Threads Per Group Parameters

For this example, we are processing a one-dimensional array of lights, and the number of lightsis
relatively small. So for our sample code we simply set the group size to 1 and the threads per group size
to the number of lightsin our system. Our light locations are then updated in a single pass.

MILSi ze t hreadG oupSi ze
MILSi ze t hreadsPer Gr oup

MTLSi zeMake( MAX_FAI RYLI GHTS, 1, 1);
MTLSi zeMake( MAX_FAI RYLI GHTS, 1, 1);

In general threads for our compute process are arranged in a 3-dimensiona array of threads. Threads are
further organized in groups, with each group of threads executed as as group, potentially sharing group-
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local memory. We need to determine the size of our thread groups, and also passin the total size of all of
the threads we need for our compute loop.

Thetrick isthat the maximum number of threadsin our three-dimensional thread group can be no bigger
than the value in our MTL ComputePipelineState's maxTotal Threadsper Threadgroup method.

Executing our Compute Kernel

Once we know the thread group and threads per group sizes, we can how execute our compute kernel:
[ comput e di spat chThr eads: t hr eadsPer Gr oup

t hr eadsPer Thr eadgr oup: t hr eadG oupSi ze] ;
[ comput e endEncodi ng] ;

Using The Results

After our kernel has executed the results are stored in our fkBuffer buffer. We can now update the places
in our code which uses the contents of our buffer (rather than copying the data to our GPU) by rewriting
our code from:

[encoder setVertexBytes:fairyLights
I engt h: si zeof (fai ryLi ghts)
at | ndex: MXVer t exl ndexLocat i ons] ;
to:
[ encoder setVertexBuffer:self.fkBuffer
of fset:0
at I ndex: MXVert exl ndexLocat i ons] ;

We don't need to make any other changesto our fairy light rendering code.

Once we've made the changes noted above (or on GitHub), our code should give the same results asin
our prior example.

However, if welook at the process of rendering aframe in our debugger we can see how our compute
kernel is now added to our rendering process:
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Image-based constructive solid geometry can be implemented in Metal. By using the modified
Goldfeather algorithm we can render complex shapes, representing intersections, differences and unions

inreal time.

In order to perform our operations we must create a separate z-buffer for temporary storage, aswell as
creating separate stencil buffers. Further, we must perform two full passes, obtaining the results of afirst
rendering pass before submitting the second.
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Note: This may not be the most efficient way to perform CSG on Metal. However, it does
work and it does prevent GPU/CPU copying of large buffers which permits real-time
rendering.

Thisis also a demonstration of the steps used in Metal to render a CSG product. Any
application using these steps would need to repeat them for each product, which may
involve multiple buffer requests for a complex object.

A Brief Description of the Algorithm.

The modified Goldfeather algorithm operates in two principle passes. The first reorganizes the
intersections, unions and differences into a collection of terms with unions at the top of the evaluation
tree. The steps here are not discussed, only that at the end of the process resultsin a collection of products
which represent an intersection or difference.

The second step involves rendering each product alayer at atime, with each "layer" indicating a part of
the model which is visible--either the frontside or backside of each primitive drawn depending if the
primitive is being subtracted or if its part of adifference. This means we must first perform a pass to count
the maximum number of layers that are to be rendered.

Once we have the depth, we then iterate through each layer, rendering the primitives in order to make the

front or back sides visible as appropriate depending on the operation.

CSG Operation Tree Normalization

We do not describe the process of tree normalization, but assume the contents are rendered in normal
form. See the paper above for more information about CSG tree normalization.

What isimportant is that when we render our scene we can rely on the objects in our scene being a union
of products P, where each product is an ordered list of one or more 3D objects that are either differenced
or subtracted.

Layer Counting

Thefirst step of our rendering process requires that we count the number of visible layersin our image.
That is, for every pixel in our scene we determine the number of rendering objects that overlap on that
pixel. Thiswill be used for "layer extraction” as our agorithm scans the different rendering layers
determining the appropriate surface to render on that layer.

One note about layer counting. Because we know that that the intersection of two geometric objects will
show the front surfaces, while subtracting shows the back surfaces, we can use face culling to reduce the
number of layers displayed.

We count layers by using stencils. Our layer counting algorithm does not use the depth buffer.
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Layer Extraction

The next step is to render each of the layersinto the depth buffer, then render the surfaces that are in front
of (or equal to) the calculated depth buffer. We do this for each of the surfacesin a particular product, and
we use even/odd pixel parity in order to determine if the inside or outside of a surface may bevisibleat a
particular location.

Product Merging

Once we've rendered a layer, we merge the layers into a second destination z-buffer, forming the final
union of objects being displayed by our system.

Algorithm Description

Gven a list of products P (found during tree normalization)
Produce a rendered i mage representing our CSG operation

Initialize output z-buffer Zouw to z-far.
Initialize output color-buffer Cu to clear color.

For each product P in our normalized CSG operation tree
Find the nunber of layers kmax in P
For each layer k in Kknex
Initialize internediate z-buffer Z to z-far.
Initialize internediate color-buffer ci to clear color.
Render k'th layer's z-buffer into z-far using stencil counting

For each primtive Ain P

Clear stencil buffer

Render A into z-buffer/stencil buffer with parity test and
z-depth testing to <= z;, and no face tests.
(Note: parity testing flips a single bit if the pixel is
visible.)

if Alis subtracted
Clear all odd-parity pixels. (Only accept even parity

pi xel s)
el se
Clear all even-parity pixels. (Only accept odd parity
pi xel s)
End
Merge Zi, C into Zowt Couwt With < Zow conpare test.
End For
End For
Di splay Cout.
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Metal Features Demonstrated

Because of the complexity of the CSG rendering algorithm, this sample code demonstrates several
features of Metal.

First, it demonstrates how we use semaphores in order to control the execution of multiple

MTL CommandBuffer objects when rendering a single image frame. Second, it shows the use of an
intermediate result from the first command buffer rendering request to construct a second rendering
request. Third, it shows arather complex system of rendering objects into off-screen buffers to handle
various rendering effects.

Note: Recall from our discussion of the Metal architecture that our GPU doesn't even see
the commands we ask to be executed until the MTLCommandBuffer is submitted for
rendering to the GPU. This means if we need to get the results of a rendering operation to
our CPU for further processing, we must submit the buffer to the GPU and wait for
execution to compl ete.

Coordinating Command Buffers

Because we are executing our rendering process using two buffers, with the results of the first set of
operations loaded into our CPU driving the second set of operations, we need to set a semaphore to
prevent our system from making unnecessary rendering calls.

Declare a Semaphore and Initialize It.

We declare our semaphore as part of our view:
@roperty (strong) dispatch_semaphore_t semaphore;
We then initialize our semaphore to pass through only 1 thread at atime.

sel f.semaphore = di spatch_semaphore_create(1l);

Assuring Only One Thread at a Time Passes through drawlnM TK View

We then test to make sure only one thread at a time passes through the rendering thread by inserting a
wait test:

di spat ch_semaphore_wai t (sel f.semaphore, DI SPATCH Tl VE_FOREVER) ;

On the second buffer execution we then clear the semaphore (allowing another thread to render the
display contents) by creating a completion handler on the second buffer:

[ buf fer addConpl et edHandl er: ~(i d<MTLComuandBuf f er> cndBuffer) {

di spat ch_semaphor e_si gnal (sel f. senaphore);

s
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Finding the Number of Layers Kmax

Thefirst pass of our algorithm isto build the count of the total number of layers. This calculates a stencil
map where each pixel location has the number of layers drawn at the pixel. We need to keep the stencil
(asit will be used in the second step) as well as determine the maximum number of levels for our
rendering phase.

Counting our Pixels

We create a separate stencil texture in self.stencil Texture because we will eventually pass our stencil to a
compute kernel to rapidly scan the texture for the maximum value. Our layer CountPipeline only does a
stencil count without any depth testing, though it uses the vertex function for 3D rendering of our objects.

pi pel i neDescri ptor = [ MILRender Pi pel i neDescri ptor new;
pi pel i neDescri ptor.vertexFunction = vertexFuncti on;
pi pel i neDescri ptor.fragnent Function = nil;
pi pel i neDescri ptor.vertexDescriptor =
MrKMet al Vert exDescri pt or Fromivbdel | O(d) ;
pi pel i neDescri ptor.stencil Attachnment Pi xel Format =
MTLPi xel For mat St enci | 8;

sel f.l ayer Count Pi pel i ne = [sel f. device
newRender Pi pel i neSt at eW t hDescri pt or: pi pel i neDescri ptor
error:nil];

The layer count stencil simply increments the stencil for every pixel drawn:

stencil = [[MILStencil Descriptor alloc] init];
stenci | . stenci | Conpar eFuncti on = MILConpar eFuncti onAl ways;
stenci|l.depthStencil PassOperati on = MILSt enci | Qperati onl ncrenent C anp;

descriptor = [[ MILDept hStencil Descriptor alloc] init];
descri pt or. dept hConpar eFuncti on = MILConpar eFuncti onAl ways;
descri ptor. backFaceStencil = stencil;
descriptor.front FaceStencil = stencil;
descri ptor. depthWiteEnabl ed = NG
sel f.layer Count Stencil = [self.device

newDept hSt enci | St at eWt hDescri ptor: descriptor];

Our rendering passis explicitly written. Our geometry consists of the difference between a cube and
sphere, with the cylinder objects subtracted from the results. For our rendering process we render the front
of the cube and sphere, and the back of the cylinder objects. (Essentially because the cylinder "scoops
out" from our object--meaning you'll only see the back side of the cylinders as they scoop content from
the cube/sphere intersection.)

[ encoder set Cul | Mode: MTLCul | ModeFront];

[sel f render Mesh: sel f. cube i nEncoder: encoder];

[sel f render Mesh: sel f.sphere i nEncoder: encoder];

[ encoder set Cul | Mode: MILCul | MbdeBack] ;

[sel f render Mesh: sel f.cylinders inEncoder:encoder];
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Scanning the Resultsto Find the Largest Value

Once we've rendered the pixel count into our stencil buffer we use a compute kernel to quickly add the
columns of stencil counts. We do this by selecting athread group size that is 1 thread high; thiswill cause
our GPU to sweep down through the stencil buffer without any thread contention when updating the count
size.

The summary is then small enough (one byte per pixel width) to simply copy back to the CPU.
Our layer count kernel is dead simple:

kernel void |layer_count(texture2d<ushort, access::read> stencil
[[texture(0)]],
uint2 ix [[thread_position_in_grid]],
device uint8_t *c [[buffer(1)]])

ushort val = stencil.read(ix).Xx;
if (c[ix.x] <wval) c[ix.x] = val;

}
We execute the compute kernel with a sums buffer that will store the results:

t hreadG oupSi ze = MILSi zeMake(w dth, [self.stencil Texture height], 1);
s = sel f.countPi pel i ne. maxTot al Thr eadsPer Thr eadgr oup;
t hreadsPer G- oup = MILSi zeMvake(s, 1, 1);
[ comput e di spat chThr eads: t hr eadG oupSi ze
t hr eadsPer Thr eadgr oup: t hr eadsPer G- oup] ;

Once we've finished the compute kernel request, we close the buffer and submit it to the GPU with a
completion handler that finds the maximum value in the column list, and calls the code to handle part two
of our rendering process.

Note: Remember that our commands are not actually executed by the GPU until after we
commit our command buffer.

[ buf fer addConpl et edHandl er: (i d<MrLCommandBuf fer> cndBuffer) {
uint8 t klen = 0;
uint8 t *buf = (uint8_t *)self.sunmsBuffer.contents;
for (NSInteger i = 0; i <wdth; ++i) {
if (klen < buf[i]) klen = buf[i];
}

[sel f render PhaseTwoW t hKLen: kil en] ;
M

[buffer conmmit];

Rendering The Products

The second phase takes the count from the first phase and uses it to render our product.
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Clear the Output Z-Buffer and Color Buffer

We first clear the output z-buffer and color buffer, both stored as separate texture buffers created in the
mtkView:drawableSizeWill Change: method by using a compute kernel.

Note: This operation would only be done once, and for a full CSG implementation would
be done before the first product layer count is performed. But for this demo we perform
the initialization in the second phase.

Our kernel function istrivial:

kernel void layer_cl eardepth(texture2d<float, access::wite> outCol or
[[texture(MXTexturel ndexQutColor)]],
texture2d<fl oat, access::wite> outDepth
[[texture(MXTexturel ndexQut Depth)]],
uint2 index [[thread_position_in_grid]])

outColor.wite(float4(0,0,0,1),index);
out Depth.wite(l.0,index);

Build the Intermediate Z-Buffer For The Kth Layer

We render our intermediate z-buffer and color buffer for the kth layer inside of afor loop. The rendering
uses a stencil to count the number of layers drawn, and while we update the depth buffer we do not use
depth buffer testing.

Note: Anintegral part of thisalgorithmisthat all products and all primitivesin a product
are rendered in the same order every time.

The stencil testing used is:

stencil = [[MILStencil Descriptor alloc] init];

stenci | . st enci | Conpar eFuncti on = MILConpar eFuncti onEqual ;

stencil . depthStencil PassOperati on = MILSt enci | Oper ati onl ncrenent C anp;
stencil.stencil FailureQperati on = MILSt enci | Operati onl ncrenent C anp;
stenci | . dept hFai | ureQperati on = MILSt enci | Oper ati onl ncrenent C anp;

descriptor = [[ MILDept hStenci |l Descriptor alloc] init];
descri pt or. dept hConpar eFuncti on = MILConpar eFuncti onAl ways;

descri ptor. backFaceStencil = stencil;
descriptor.frontFaceStencil = stencil;
descriptor.depthWiteEnabl ed = YES;
self.layerExtractStencil = [self.device

newDept hSt enci | St at eW t hDescri ptor: descriptor];

Note that our stencil always increments the stencil count, but only popul ates our depth stencil when the
stencil count in a pixel matches our target value in our loop.
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Draw Our Primitives, Clearing Pixelsthat are Not Visible

The next step isto render each primitive in the same order as before, without any surface culling, and
using a depth test that renders pixelsif less than or equal to our current depth, tracking the parity (that is,

if the number of surfaces rendered is even or odd).

Our rendering step does not update the depth buffer; we're only interested in counting the number of

surfaces arein front of or equal to the current surface:

pi pel i neDescri ptor = [ MILRender Pi pel i neDescri ptor new;
pi pel i neDescri ptor.vertexFunction = vertexFuncti on;
pi pel i neDescri ptor.fragnent Function = nil;
pi pel i neDescri ptor.vertexDescriptor =
MIrKMet al Vert exDescri pt or Fr omvbdel | O(d) ;
pi pel i neDescri ptor.col or Attachment s[ 0] . pi xel Format =
sel f. col or Pi xel For mat ;

pi pel i neDescri ptor.col orAttachments[0].witeMask = MILCol or Wit eMaskNone;

pi pel i neDescri ptor.stencil Attachnment Pi xel Format =
MTILPi xel For mat Dept h32FI oat _St enci | 8;

pi pel i neDescri pt or. dept hAtt achment Pi xel Format =
MTILPi xel For mat Dept h32Fl oat _St enci | 8;

self.layerParityPi peline = [self.device

newRender Pi pel i neSt at eW t hDescri pt or: pi pel i neDescri pt or

error:nil];

Our stencil flipsasingle bit to track if the number of pixels rendered is even or odd:

stencil = [[MILStencil Descriptor alloc] init];

stencil . depthStencil PassOperati on = MILSt enci | Qperati onl nvert;
stencil.stencil FailureQperati on = MILSt enci | Oper ati onKeep;
stencil . depthFail ureQperation = MILSt enci | Oper ati onKeep;

stencil.readVask = 1;
stencil.witeMask = 1;

descriptor = [[ MILDept hStencil Descriptor alloc] init];

descri pt or. dept hConpar eFuncti on = MILConpar eFuncti onLessEqual ;

descriptor. depthWiteEnabl ed = NG

descri pt or. backFaceStencil = stencil;
descriptor.front FaceStencil = stencil;
self.layerParityStencil = [self.device

newDept hSt enci | St at eW t hDescri ptor: descriptor];

We render each primitive. (This shows the first object being rendered.)

[encoder setRender PipelineState:self.layerParityPipeline];

[encoder setDepthStencil State:self.layerParityStencil];
[encoder set Stencil ReferenceVal ue: 1];
[ encoder setVertexBuffer:self.uniforns
of fset:0
at | ndex: MXVer t exl ndexUni f or nms] ;
[ encoder set Cul | Mode: MILCul | ModeNone] ;
[sel f render Mesh: sel f. cube i nEncoder: encoder];
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We then perform a second pass, clearing all pixelsthat do not match our even/odd test. (This shows the
first object being cleared.)

[ encoder set Render Pi pelineState:self.layerC earPipeline];
[encoder setDepthStencil State:self.layerd earStencil];
[ encoder set Stencil ReferenceVvalue: 1]; // Odd: not subtracted
[ encoder setVertexBuffer:self.square
of fset:0
at | ndex: MXVer t exl ndexVerti ces];
[ encoder set Fragnent Byt es: &col or
| engt h: si zeof (col or)
at | ndex: MXFr agnent | ndexCol or];
[encoder drawPrimitives: MILPrimtiveTypeTriangl e
vertexStart: 0
vertexCount: 6] ;

We repeat this sequence for each of our three primitives.

Merging the Intermediate Depth/Color Buffer into the Output Depth/Color Buffer

For merging our intermediate and output depth and color buffers we use a compute kernel. The compute
kernel isrelatively smple:

kernel void |ayer_nerge(texture2d<float, access::read> inCol or

[[texture(MXTexturel ndexlnColor)]],

dept h2d<fl oat, access::read> i nDepth
[[texture(MXTexturel ndexl nDepth)]],

t ext ure2d<fl oat, access::wite> outCol or
[[texture(MXTexturel ndexQut Color)]],

texture2d<fl oat, access::read wite> outDepth
[[texture( MXTexturel ndexQut Depth)]],

uint2 index [[thread_position_in _grid]])

float4 inc = inColor.read(index);
float ind = inDepth.read(index);
float curd = outDepth.read(index).r;

if (ind < curd) {
out Dept h. write(ind,index);
out Col or.write(inc,index);

}

We then invoke our compute kernel at the bottom of the loop, accumulating the resultsin our output
buffer.

conput e = [ buffer conputeCommandEncoder];

[ comput e set Conput ePi pel i neSt ate: sel f. | ayer MergePi pel i ne];

[comput e set Texture:sel f.col or Texture atl ndex: MXText ur el ndexl nCol or];
[comput e set Texture:sel f.depthTexture atl ndex: MXText ur el ndexl nDept h] ;
[ comput e set Texture: sel f.out Texture atlndex: MXText ur el ndexQut Col or];
[comput e set Texture:sel f.screenDepth atlndex: MXText ur el ndexQut Dept h] ;
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MILSi ze t hreadG oupSi ze = MILSI zeMake([ sel f. col or Texture wi dth],

[sel f.col orTexture height], 1);
uint s = sqrt(self.layerMergePi pel i ne. maxTot al Thr eadsPer Thr eadgr oup) ;
MILSi ze t hreadsPer G oup = MILSi zeMake(s, s, 1);

[ comput e di spat chThr eads: t hreadG oupSi ze
t hr eadsPer Thr eadgr oup: t hr eadsPer Gr oup] ;
[ comput e endEncodi ng];

Displaying the Results
Once the results are accumulated into our output buffer we render them to the screen as our final step:

descriptor = self.current Render PassDescri ptor;
encoder = [buffer render CommandEncoder Wt hDescri ptor: descriptor];

[ encoder set Render Pi pel i neSt at e: sel f. out put Resul t Pi peline];
[ encoder setVertexBuffer:self.square offset:0
at | ndex: MXVer t exl ndexVerti ces];
[ encoder set Fragnent Texture: sel f. out Texture
at | ndex: MXText ur el ndexI nCol or];

[encoder drawPrimitives: MILPrimtiveTypeTriangl e

vertexStart: 0

vertexCount: 6] ;
[ encoder endEncodi ng];

Once all thiswork is done (the code isin GitHub), we should see:

Window
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Work That Needs To Be Done.

In order to turn thisinto aworking CSG rendering system for Metal, some additional work needsto be
done.

Normalizing the CSG Operation Tree

Thefirst thing that needs to be done is the work to normalize the CSG operation tree into normal form for
our agorithm. This also includes creating bounding boxes for our primitives and doing intersection tests
so that unnecessary rendering is not performed. Further, any product P which only has one primitive in it
can be rendered into the destination buffer directly.

L ooping AcrossAll Products

Second, we would need to create aloop to loop across al productsin our normalized tree. Our rendering
example above only shows the rendering of a single product. But we would need to do a few things (such
as moving the initialization of the output z-buffer and color buffer to the top of the loop and tracking
multiple buffers as our product is rendered) in order to turn thisinto afinal product.
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Shaders and Metal Functions

The core element of Metal which makes it so powerful isthe ability to write programs that run directly on
the GPU.

The Metal language is based on the C++14 language specification, with some key differences, mostly
arranged around the needs of compiling for a GPU.

Note: Thisis not a complete description of the Metal Shader Language. This describes
only a subset of the language as a sort of "introduction" to the highlights of the language.

About GPUs

A GPU is aspecialized processing unit that contains specialized computing hardware for the vector
processing necessary for 3D rendering (including manipulating 4x4 matrices, vectors and arrays of color
maps) along with dozens or even hundreds of separate processors which can perform a collection of math
operations simultaneously. (As an example, each of the two built-in GPUs on the 2013 Mac Pro can
execute up to 1024 separate threads simultaneously.)

Threads and Thread Groups

GPU processors generally execute a massive number of short programs simultaneously, organized around
the notion of a"thread". Each "thread" executes a short program--generally afew dozen lines of code
performing a particular mathematical operation such as calculating the color of apixel in an image.

Threads can be grouped in "thread groups'--groups of threads which work on ablock of data
simultaneoudly, and threads are generally organized as either 1 dimensional, 2 dimensional, or 3
dimensional arrays, depending on the nature of the compute task. For example, an image processing
kernel which converts an image from color to black and white may use a 2-dimensional array of threads
to correspond to the 2-dimensional array of pixelsin your image.

SIMD Groups

Further, threads are organized in "SIMD Groups'. Theideaisthat since generally most compute functions
execute the same code path, it is advantageous to have a single processor sequence instructions for avery
wide vector or array of inputs and outputs at the sametime. That is, if you have a program:

uint8 t programi(uint8 t a, uint8_t b)
{

}

A processor which can process 256-hit wide vectors as a single operation can reorganize the code behind
this function so that it can essentially run 32 calls to program1() simultaneously by packing 32 8-bit
inputs into the 256-bit wide vector, and run the operation to a 256-hit wide output with 32 simultaneous
results.

return a * 2 + b;
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Thisis key to understanding why conditional branches can be so complicated to handlein a GPU, and
why conditional statements may not necessarily save any compute cycles. If you have the program:

uint8 t progran2(uint8_t a, uint8_t b)

{
if (a <32 {
return b * 2; // Statement A
} else {
return b * 2 + a; // Statenent B
}
}

The problem isthat if even 1 of our 32 inputs take the first branch and the other 31 inputs take the second
branch, our SIMD instructions wind up being organized so that both statements A and B have to be
executed. (That is, we get no savings by skipping instructions.)

Of course in amassively parallel processor the savings of running thingsin parallel win out over the
inefficiency of having to execute both branches of an instruction. But it is worth remembering, since each
branch potentially adds further complexity when writing code that runs on a GPU, since the GPU has to
track the results of both branches.

And in the process the number of potential paralel callsthat can be made may drop from 32 to 16 as
additional bitsin our 256 bit wide vector has to be used for branch housekeeping purposes.

And this means the number of threads you can execute at the same time is dependent upon the program
you write.

Note: the number of threads that can be executed for your program can be queried from
the MTL ComputePipelineSate using the maxTotal ThreadsPer ThreadGroup method and
the threadExecutionWdth method.

Graphics Rendering

GPUs are primarily designed to accelerate the rendering of graphicsimages. As such they are designed
around concepts such as "textures" and "buffers' and "depth buffers." (Thisiswhy even for compute
kernels you still must deal with passing information in and out using textures and the like.)

The graphics pipeline used for graphics rendering involves the following steps:

- Vertex Raster- Fragment
Primitives - S .
Function ization Function
—| Scissor Multi- Stencil Test Depth Test Visibility Blend Attachment
sample Result
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The Compute Command encoder bypasses these steps, essentially providing a method for invoking a
kernel across aone, two or three dimensional array of values.

Functions

The primary entry point for Metal functions (that is, the functions exposed to the CPU for invocation in a
Metal application on your iOS or MacOS device) are either kernel, vertex or fragment functions.

Other C++14 functions may be declared but they may not be accessed outside of the GPU.
shader _functi on:
shader _type return_type IDENTIFIER ' (' paraneter_list ")’

conpound_st at erent ;

shader _type: 'vertex' | 'fragment' | 'kernel' ;

Function Types

There are three types of GPU functions that are exposed as entry points:

Vertex Functions

Vertex functions are called as part of arender pass encoded using the M TL RenderCommandEncoder, and
calls this function once per vertex in the model. The purpose of the vertex model isto calculate the
location of the input primitives in screen coordinates, which is the destination for projection of avirtua
3D world. Screen coordinates are x: -1 to 1 left to right, y: -1 to 1 bottom to top, and z: 0 to 1 fromto
back.

Fragment Functions

Fragment functions are called as part of arender pass encoded using the M TL RenderCommandEncoder,
and is called once per pixel for each collection of pixels encoded in a polygon represented by a collection
of vertices. The purpose of the vertex model is to calculate the color at each pixel.

Kernel Functions
Kernd functions are called as part of a compute command encoder, and is called the number of times

specified in the MTL ComputeCommandEncoder, as part of a one, two or three dimensional array of
threads.

Passing In Resources

The function parameters of the vertex, fragment and kernel functions specify the resources that are used
when invoking each function. Arguments are passed in as integer-indexed resources in a resource table
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and are specified in the parameters to the function. The way thisis done is described in greater detail in
Apple's Metal documentation.

Specifying Location In The Parameter Description

The location of each parameter passed to afunction can be specified as an attribute:

paraneter |ist: paraneter_declaration

| parameter_list ',' parameter_declaration

par anet er _decl aration: declaration_specifiers declarator attributes

attributes: '[[" attribute list ']]

attribute list: attribute_ item

| attribute_list ',' attribute_item

Example:

fragment float4 fragment_fairy(VertexQut v [[stage_in]],
texture2d<float> fairyTexture [[ texture(MXTexturelndex0) ]])

{
}

Specifying Location In A Structure

The locations can be passed in via a structure, passed in by value to the function:

structure_declarator _|i st
structure_decl arat or
| structure_declarator_list '," structure_declarator

structure_decl arat or
struct _declarator attributes

Example:

struct Foo {
texture2d<float> a [[texture(0)]];
dept h2d<f | oat > b [[texture(1)]];

b

kernel void nmy_kernel (Foo f)

{
}
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Note: Nested structures are also supported; see section 4.3.2 of the Metal Shading
Language Specification for more information.

Valid attributes (as listed in section 4.3 of the Metal Shading L anguage Specification):

attribute corresponding used in description

data type

[[buffer(index)]] any vertex, fragment, Specifiesthe datais attached using a setBuffer

kernel call (or equivalent) in the command encoder.

[[texture(index)]] any vertex, fragment, Specifiesthe datais atttached using a

kernel setTexture call (or equivalent) in the command
encoder.

[[sampler(index)]] any vertex, fragment, Specifies the sampler is attached using a

kernel setSamplerState call (or equivaent) in the
command encoder.

[[threadgroup(index)]] any, with kernel Specifies the data buffer for the thread group

threadgroup memory at index specified in the

memory attribute MTL ComputeCommandEncoder
setThreadgroupM emoryL ength:atlndex:
method.

[[vertex_id]] ushort, uint vertex The per-vertex identifier.

[[instance _id]] ushort, uint vertex The per-instance identifier, when a vertex
drawing method including an instance
parameter is called.

[[stage_in]] any vertex, fragment, Per-item input, used in vertex and kernel

[[thread_position_in_gri
d]

[[thread_position_in_thr
eadgroup]]

[[threadgroup_position i
n_grid]]
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ushort, ushort?2,

ushort3, uint,
uint2, uint3

ushort, ushort2,
ushort3, uint,
uint2, uint3

ushort, ushort2,
ushort3, uint,
uint2, uint3

kernel

kernel

kernel

kernel

functionsin conjunction with the attributes
buffer to passin per-vertex or per-kernel
inputs.

For fragment functions handles the per-vertex
generated outputs passed in from the vertex
functions, extrapolated across the pixelsin the
fragment.

The thread's position in the overall N-
dimensional grid of threads.

The thread's position in the threadgroup

The threadgroup position in the grid.
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Per-Vertex Attributes

Attributes can be used in a structure declaration to specify the location of each field of the structure, for
valuesthat are passed in for per-vertex and per-thread parametersusing [ [ st age_i n] ] .

Example:

struct Vertexln {
float3 position [[attribute(MXAttributel ndexPosition)]];
float3 normal [[attribute(MXAttri butel ndexNormal )]];
float2 texture [[attribute(MXAttri butel ndexTexture)]];

1
vertex VertexQut vertex function(Vertexin v [[stage_in]])
{
}
attribute corresponding data  description
type
[[attribute(index)]] any Specifies the attribute index which gives the data

format and length of the field in the structure.

Vertex Function Return Attributes

A structure used to declare the return of a vertex function may contain additional attributes which specify
how the values are returned.

Note: If a vertex function does not return a structure, it must return either a void or a
float4, which is assumed to be the position, and the [[ position] ] attribute does not need to

be specified.
attribute corresponding data  description
type
[[clip_distance]] float or float[n], withn  Distance from vertex to clipping plane
known at compiletime
[[position]] float4 Required. The transformed vertex position. Used by
the fragment shader to cal cul ate screen position and
depth.

Fragment Function Input Attributes

These attributes may be combined with the vertex function attribute list (above) to specify additional
parameters passed in to the fragment function.
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attribute corresponding data  description

type
[[color(index)]] floatn, halfn, intn, uintn, Theinput value read from a color attachment. The
shortn, or ushortn index indicates from which color attachment to read
from.
[[front_facing]] bool Trueif the fragment belongs to a front-facing primitive.
[[position]] float4 The transformed vertex position. Used by the fragment

shader to calculate screen position and depth.

Fragment Function Return Attributes

A structure used to declare the return of afragment function may contain additional attributes which
specify how values are returned.

If afragment returnsaf | oat 3 or f | oat 4 type, they correspond to the color output in color index 0. The
fragment function may specify avoi d return type, and it may specify a structure with attributes from the
list below.

Note: See section 4.3.4.4 of the Metal Shading Language Specification for more

information.
attribute corresponding data  description
type

[[color(m)]] floatn, halfn, intn, uintn, Color value output for a color attachment. If index

[[color(m), index(i)]] shortn, or ushortn specified, index i can be used to specify one or more
colors output by afragment function for a given color
attachment and is an input to the blend equation.

[[depth(depth_argument)]] float Depth value output using the function specified by
dept h_ar gunent .

[[sample_masK]] uint Coverage mask.

Data Types

The Metal shading language extends the C++14 language to add support for avariety of scalar, vector and
matrix data types, as well as support for textures maps. Data types are enumerated in the Metal Shading
Language Specification in Chapter 2.

Note: The following list is not exhaustive.

Commonly used types include:
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Scalar Types

Type Description Size (bytes)
bool boolean value, either true (1) or false (0). 1
char,int8 t  Signed 8-bit integer 1
unsigned Unsigned 8-hit integer 1
char, uchar,
uint8 t
short, Signed 16-bit integer 2
intl6 t
unsigned Unsigned 16-bit integer 2
short, ushort,
uintl6 t
int, int32_t  Signed 32-bit integer 4
unsigned int, Unsigned 32-bit integer 4
uint,
uint32_t
half 16-bit floating point value 2
float 32-hit floating point value 4
size t Unsigned integer type, result of sizeof operator: a 64-bit unsigned integer 8
ptrdiff_t Signed 64-bit integer, result of subtracting two pointers. 8
void Empty value or no value; used to indicate no parameter or return type.

Vector Types

Inthelist of types below, 'N'is either 2, 3 or 4, representing a 2-, 3- or 4-component vector type. (For
example, a4 item float vector would be written f | oat 4.)

Note: There are also packed variants of the vector types below; see section 2.2.3 of the
Metal Shading Language Specification.

Type Description Byte Size For N:

2 3 4
boolN Array of booleans 2 4 4
charN Array of signed 8-bit integers 2 4 4
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Type Description Byte Size For N:

2 3 4
ucharN  Array of unsigned 8-bit integers 2 4 4
shortN Array of signed 16-bit integers 4 8 8
ushortN  Array of unsigned 16-hit integers 4 8 8
intN Array of signed 32-bit integers 8 16 16
uintN Array of unsigned 32-bit integer 8 16 16
halfN Array of 2-byte floating point values 4 8 8
floatN Array of 4-byte floating point values 8 16 16

Note: Thereisno doubleN vector declaration in Metal as of thiswriting.

Vector Component Access

Vector components may be accessed using an array index:
int4 vector = int4(1,2,3,4);
vector[2] == 3

Vector components may also be accessed using a'.' operator and thefieldsx, y, z,wandr, g, b, a
vector.z == vector.b == vector[2] ==

Vector components accessed with a'.' operator may also be used to extract a vector or to assign
components in a vector:

i nt2 subvect = vector. xz; /1l subvect is the vector (1, 3)
vector.ba = int2(5,6); /1 vector nowis (1,2,5,6)
Matrix Types

Matrix types are 2 dimensional arrays of numbers which can be used to multiply against other matrices
and against vectors. In thelist below, M and N are values from 2 to 4. So, for example, a 3x4 matrix of
half floating point values would be declared hal f 3x4.

Note: For size and alignment, seetable 5 of section 2.3 of the Metal Shading Language
Soecification.
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Type Description
halfMxN Matrix of 2-byte floating point values M columns wide and N rows tall.
floatMxN Matrix of 4-byte floating point values M columns wide and N rows tall.

Accessing Matrix Components

Matrix components may be accessed using array subscript syntax in order column, row:

float4x3 m

n1][2] =

float3 col

Buffers

= n{0];

/] set the itemat columm index 1, rowindex 2 to 5.

/] set col to the colum at index O.

Metal implements buffers as a pointer to a built-in or user-defined type that are declared in program scope
or passed in as arguments to a function.

Note: See Section 2.7 of the Metal Shading Language Specification for limitations

Buffers may be declared in in the following address spaces, specified as a prefix to the data type
declaration (see section 4.3 of the Metal Shading Language Specification for more information):

Address Space Used In

Description

device

constant

threadgroup

thread
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kernel, vertex,
fragment

kernel, vertex,
fragment

kernel

kernel

Memory allocated from the device memory pool that is both readable
and writeable.

Memory allocated from the device memory pool that is read-only.
Variablesin program scope declared constant must be initialized during
the declaration.

Memory shared amongst all threads in a single thread group. Memory
alocated in the threadgroup memory space only exists so long as the
threads within athread group exist and may be used to share information
between threads in a thread group.

Memory allocated that is only visible in the current thread. Variables
declared inside a graphics or kernel function is alocated by default in
thread address space.
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Textures

Thetexture datatype is a handle to a one-, two- or three-dimensional texture data. The following texture
declarations are commonly used:

Note: Other texture types exist; see section 2.8 of the Metal Shading Language
Specification for more information, as well as the MTLTexture object.

Address Space Description

textureld<T, access a = access.sample> A one dimensional texture array

texture2d<T, access a = access.sample> A two dimensional texture array

texture3d<T, access a= access.sample> A three dimensional texture array

texturecube<T, access a = access::sample> A texture cube. Thisis 6 separate 2D textures forming a cube.

depth2d<T, access a = access::sample> A two dimensional depth texture

depthcube<T, access a = access::sample> A depth cube. Thisis 6 separate 2D depth textures forming a
cube.

Depth textures may only usef | oat for type T. Textures may use any one of hal f, fl oat, short,
ushort,int oruint.

The access parameter of the texture declaration is optional. If not provided it is assumed to be sample.
Valid access attributes are:

Access Used In Description

sample texture, depth The texture object can be sampled. Implies the texture can be read
with and without a sampler.

read texture, depth The texture object can only be read from.
write texture only The texture object can be written to.
read write texture only The texture object can be read from or written to

Example of using access qualifiers:

void foo (texture2d<float> ingA [[texture(0)]], /1 access::sanple
texture2d<fl oat, access::read> ingB [[texture(1)]],
texture2d<fl oat, access::wite> ingC [[texture(2)]])

Samplers

For textures accessed with a sampler, a sampler specifies how the contents of a texture map are accessed
or interpolated.
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Samplers are described in greater detail in section 2.9 of the Metal Shading Language Specification, and
with the MTL SamplerState class. In short, however, a sampler may be declared by creating an

MTL SamplerState class and passing it into the shader function through the
MTLRenderCommandEncoder or MTL ComputeCommandEncoder classes, or directly declared within
the shader function using the sanpl er object.

Examples:

/1 Declare a sanpler passed in through the MILConput eConmandEncoder
kernel void ny_kernel (device float4 *p [[buffer(0)]],
texture2d<float> ing [[texture(0)]],
sanpler snp [[sanpler(3)]])
{
}

/1 Locally declare a sinple sanpler
fragment GBufferQut fragnent gbuffer(VertexQut v [[stage_in]],
texture2d<fl oat, access::sanple> texture [[texture(0)]]
)11

dept h2d<f | oat, access::sanpl e> shadowvap [[texture(1l )
{
constexpr sanpler linearSanmpler (mp_filter::linear,
mag_filter::linear,
mn_filter::linear);
}

Reading and Writing to a Texture

Functions used to access the contents of atextureis given in section 5.10 of the Metal Shading Language
Specification. In short, however, the following methods are commonly used:

Method Description

t.sample(sampler, coord) Sample acolor in the 2D or 3D texture. Coordinate width must match
the number of dimensionsin the texture.

t.read(coord) Read from the texture at coordinate provided. The coordinate must
be an integral vector with the same number of dimensions asthe
texture.

t.write(col or,coord) Write the color to the texture at coordinate provided. The coordinate
must be an integral vector with the same number of dimensions asthe
texture.
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A Brief Introduction To Homogeneous Coordinates

Homogeneous coordinates or projective coordinatesis a system of coordinates used in projective
geometry. It has the advantage that the coordinates of points, including those at infinity, can be
represented using finite coordinates. They are useful because often equations using homogeneous
coordinates can be far smpler than using traditional cartesian coordinates.

Homogeneous coordinates are used extensively in computer graphics for two primary reasons:

1. Trangationscan berepresented using a matrix multiply. This has the advantage of allowing a
collection of coordinate transformations that include scaling, rotations and trandations to be
represented with a single matrix, and further, allows us to reverse the coordinate transformations
through matrix inversion.

2. Pergpective transformations may be represented. Depth perspective (where farther away
objects seem smaller)

Homogeneous Representation of 3D Coordinates

A 3D coordinate is represented in homogeneous coordinates by appending an extra dimension to the
coordinate, with the property that a homogeneous point

(x,y,2,w)
represents the cartesian point
X y Z
(—,—, )
W w w

We generally convert a cartesian coordinate (x,y,z) to a homogeneous coordinate by appending w = 1:
(x,y,2,1).

Note: We can use the same principle with 2D coordinates for transformations and the like
by extending a coordinate (x,y) to a homogeneous coordinate (x,y,w).

Homogeneous Coordinate Transformations

Coordinates in one coordinate system can be transformed using matrix multiplication. For our examples
we use pre-multiplication:

P'=MP
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where Pisthe original point, P isthe transformed point, and M is the 4x4 matrix representing a
transformation.

Coordinates may be transformed back from P' to P by pre-multiplying by the inverse of the matrix M.

Transforming Normal Vectors

Normal vectors; that is, vectors which represent the normal of a surface, obey the property that the dot
product of the normal and all points on aflat surface are the same constant:

N-P=C

Thisimpliesif we wish to transform the normal of a surface (for lighting effects) we need to post-
multiply our normal vector by the inverse of our matrix. Thisis because any normal N' must obey the
property that the dot product against any transformed points P have the same constant value.

N-P = N-M'MP
= NM-'P’
= N"P'

By construction we see that N' = NM-L.

Common Coordinate Transformations
Within our system of coordinate transformations the following matrices are used to represent translations,
scaling and rotation.
Translation
The tranglation matrix moves a point by a specified amount along the x, y and z axis:
1000
0100

0010
(xyzl

I(x,v,z) =

Scale

The scale matrix scales the object along the x, y and z axis:
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(x000]
Oy 00
00z 0
0001

S(x, v,z

Rotate

There are three separate rotation matrices, one for each axis x, y and z:

[ O 0 0]
0 cos(a) sin(a) 0
0 -sin(a) cos(a) 0
0 0 0 1

[ cos(a) 0 -sin(a) 0

g I 8B B
sin(a) 0 cos(a) 0
BRSO R

cos(a) -sin(a) 0 0]
sinfa) cos(a) 0 0
0 0O 10
0 S

R (a) =

R(a) =

R.(a)

The general rotation matrix which rotates around an axis specified as (X,y,z) by the angle a is given by:

| 1x24c txy+zs txz-ys 0
Ixy-zs ty’+c tyz4+xs 0
IXZ+ys tyz-xs 1z 24¢ 0

0 0 0 1

Rya) =

-

where axisA is(x,y,2), c =cos(a), s=sin(a),andt=1-c.
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Perspective

The perspective transformation makes use of the fact that as the farther away an object gets, the larger the
w component should become, making the apparent sizes smaller as things recede into the distance. The

customary perspective matrix used by most third party libraries take afield of view, an aspect ratio, a near
and far clipping plane, and transform objects to the screen bounding box defined by Metal:

P(fov,aspect,n,f)
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fov _ )
e 0 0
aspect
0O fov 0 O
:  f4n
0 0 —— -1

n-f

2nf

n-f

0

0 0
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