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Introduction

Metal is Apple's API for creating computer graphics on the Macintosh, iOS and tvOS platforms.

Metal provides support for GPU-accelerated 3D graphics as well as GPU computation workloads. Metal 
is a low level API, meaning Metal provides a low overhead API for creating graphics and computational 
workloads but requires significantly greater effort to use. Low level APIs are very flexible but notorious 
for being extremely hard to use and harder to learn.

The purpose of this document is to both introduce Metal, and dive into different aspects of Metal so you 
can create very complex graphics and compute-bound applications using Metal.

Note that because different API entry points can have a tremendous amount of complexity 
and different options when using them, this book is not necessarily intended to be read in 
order. Links are provided for more information, and for greater depth in discussing those 
API endpoints. Because of that, this book should be read as a PDF file on a computer 
with an Internet connection.

Note also that I'm trying to be intentionally terse in my descriptions, in order to get to the 
heart of the matter as quickly as I can. 

This document is not an introduction to Computer Graphics, and assumes a degree of 
knowledge about computer graphics and some familiarity with OpenGL or Direct X.  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The Metal Execution Model

Computers which have hardware-supported 3D rendering generally provide this functionality using a 
Graphics Processing Unit. A graphics processing unit is a separate microcomputer which provides 
specialized functionality for performing massively parallel calculations, such as those used when 
accelerating 3D computer graphics.

One key thing about the GPU is that you can write custom software that runs on the GPU separate from 
the CPU. These "shader functions" permit you to write programs for performing complex calculations on 
the GPU for various visual effects, and for computational tasks. Shaders are discussed in greater detail in 
a later chapter.###(INTRO_SHADERS)

The Metal Framework provides a method for communicating requests to a separate GPU, such as the one 
built into the iPhone or the graphics card built into the Macintosh.

This involves APIs for obtaining a representation of a GPU, for copying data to a GPU (such as texture 
map data or geometry data), and for sending commands to use that data for performing computations and 
for rendering graphics.

The execution model used by Metal is that of a device which a buffer full of commands is sent.

�

Each buffer of commands consists of one or more encoded collections of commands.

�

Commands are then executed asynchronously on the GPU. The Metal API contains a number of methods 
for receiving callbacks when a command finishes, as well as methods for copying data to the GPU. With 
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this, you could construct a model of a planet and space ship--and during rendering simply update the 
relative position of the two bodies in order to reduce the amount of data that has to be sent back and forth 
between the CPU and the GPU.

Because the types of commands sent in a single command buffer can be mixed, you can even construct a 
simulation that runs entirely on the GPU using a compute kernel, and display the results of the simulation 
graphically using a 3D rendering shader--all without involving the CPU in the calculations.

The Use of Protocols

The Apple Metal API makes extensive use of Objective C Protocols in order to hide the implementation 
of the underlying Metal objects. This implies that obtaining and using certain objects within Metal 
follows a well-defined pattern of using a protocol (generally MTLDevice, though not always) to obtain 
new instances of objects.

Further, some objects are expensive to obtain or initialize, so they are expected to be set up on the 
initialization of your application, and reused whenever possible. This implies the initialization code of 
your application can become extremely complex as you set up the GPU for rendering or for performing 
computational tasks.

The Device

A GPU is represented by the MTLDevice protocol. This protocol provides interfaces for copying data to 
the device, for compiling or obtaining shader functions on a GPU, and for submitting requests.

Obtaining a Device

The easiest way to obtain a device is by using MTLCreateSystemDefaultDevice. On the Macintosh 
(where multiple GPUs may be installed), there are techniques for device selection which are more 
efficient that are not covered in this document.

The Command Queue

The MTLCommandQueue protocol represents the communications queue for sending commands to the 
GPU. This is obtained from the MTLDevice protocol, and should be obtained once and reused as 
required.

The Command Buffer

The MTLCommandBuffer protocol represents a collection of commands to be sent to the GPU and 
executed as a single unit. This is obtained from the MTLCommandQueue protocol.

Generally when building a 3D application, you would create one MTLCommandBuffer to represent the 
commands sent to the GPU to render a single frame. Thus, you would create a command buffer each time 
you render a frame--updating the command parameters necessary to show movement on the screen.
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Once all of the commands have been encoded in this buffer, you can optionally add handlers that are 
called back when the buffer is scheduled for execution or when it completes, to specify the drawable in 
which the graphics will be presented (if the commands represent a graphics operation), and finally to 
commit the commands to the GPU for execution.

The Command Encoder

The MTLCommandEncoder protocol represents the parent protocol of a collection of protocols used to 
encode commands in a command buffer. You would obtain an encoder from the MTLCommandBuffer, 
using the appropriate method depending on the types of commands to be encoded.

A command buffer may contain one or more sets of commands encoded with different encoders, and the 
commands from each encoder is executed in the order they are created in a command buffer.

Encoders are created one at a time. Thus, if you have multiple encoders (for example, a compute 
command which runs one step of a simulation, followed by a render command which renders the results 
on a display), the compute command encoder in our example is guaranteed to run first.

Multiple encoders can be used for creating complex rendering effects, such as performing shadow 
mapping by encoding the two separate rendering passes required as two separate rendering commands. 
Multiple rendering passes can also be used for reflection mapping and deferred shading.

Rendering Command Encoder

The most commonly used command sent to a GPU is rendering graphics, and this is encoded using the 
MTLRenderCommandEncoder. The rendering encoder is obtained from the MTLCommandBuffer by first 
constructing an MTLRenderPassDescriptor class and setting the parameters that will be used by that 
rendering pass--such as the destination screen or texture that the graphical results will be rendered to.

You would then set the MTLRenderPipelineState representing the rendering pipeline (discussed below 
###(RENDER_PIPELINE)) that will be used to render graphics on the display. Rendering pipelines are 
expensive objects to create and are generally built in advance during initialization. Multiple pipelines can 
be used in a single command encoder to specify different rendering effects for different objects. Objects 
drawn with the drawing commands in a render command encoder are drawn with the last set pipeline 
state.

You would set up the different texture references, buffer references and other parameters used for 
rendering objects.

Then you would issue the appropriate drawing commands to draw the primitives (whose geometry was 
set with the buffer references above).

And finally you would finish encoding by using the endEncoding method.
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Compute Command Encoder

The compute command encoder is used to send a compute request to the GPU, and this is encoded using 
the MTLComputeCommandEncoder. This follows a similar pattern as the rendering command encoder 
above: a compute encoder is obtained from the MTLCommandBuffer, and a MTLComputePipelineState 
representing the compute pipeline (with a reference to the kernel function on the GPU to execute) is 
associated with it.

A compute pipeline has a number of options associated with it involving the number of GPU threads that 
are associated with the task, as well as the resources associated with it. ###(COMPUTE_PIPELINE)

Like the render command encoder, when you are finished encoding the commands (including specifying 
the buffers passed to the command buffer for use during execution), you would finish encoding with the 
endEncoding method.

Memory Management Tasks

Memory management tasks (such as copying data to the GPU) can be encoded using the 
MTLBlitCommandEncoder. Generally data such as textures or models or transformation matrices used to 
calculate the position of 3D data is handled by manipulating the data buffers directly 
###(DATA_BUFFERS), but this command also provides you the ability to handle certain tasks, such as 
blurring of images, where other techniques may not work as efficiently.

Parallel Rendering

The MTLParallelRenderCommandEncoder allows for encoding multiple multiple rendering passes in 
parallel, and can be used to create MTLRenderCommandEncoders for rendering passes which operate 
simultaneously. This can be used to gain greater throughput for complex rendering tasks.

This document does not discuss either the MTLBlitCommandEncoder or the 
MTLParallelRenderCommandEncoder protocols.
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Building a Basic MacOS Metal Application

This section discusses the steps for putting together a basic MacOS metal application. The first section 
will describe how to put together just enough of an application to get a blank screen. The second section 
will discuss adding geometry to render a triangle. The third will discuss drawing a more complex shape, 
and the fourth will discuss texture maps.

Each of these sections are intended to provide a very simple introduction to some of the basic features of 
Metal, and should help you understand the role of the different components in doing basic graphics 
operations.

All source code for the examples below can be downloaded from GitHub. You are also free to use the 
sources on GitHub in your own projects.

Starting a New Metal Application

The goal of this section is to introduce the basic metal view class and delegate, obtaining a device, 
initializing a command queue and buffer, and enqueuing the buffer to the GPU to render a blank screen.

This may not sound like a lot, but it does illustrate the basic moving parts of a Metal application.

Creating the View

Currently the proper approach for building MacOS, iOS and tvOS applications which use metal is to use 
the MTKView class as the destination view. The MTKView class uses the MTKViewDelegate class to 
actually handle rendering.

Note: As with all applications which use a delegate pattern, you have three choices in 
developing your application.

You can create a separate delegate class object (inheriting from NSObject) which 
contains the rendering methods for your application. You would then create an instance 
of your class in the NSViewController/UIViewController of your class, and add it as a 
delegate to the MTKView class.

You can make your NSViewController/UIViewController conform to the 
MTKViewDelegate protocol, and set the view controller as the delegate to the MTKView 
class.

Or you can inherit from the MTKView class and make it conform to the 
MTKViewDelegate protocol, and have the view class set itself as its own delegate.

In our sample code we use the third option. There is nothing special about any of these 
options and they have their own advantages and disadvantages.

Apple's "Hello Triangle" example gives a good example of the first option of a separate 
rendering class.
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In our sample code we set the root view of our view controller inside our Main.storyboard file to be an 
instance of our MXView class, which inherits from MTKView and which conforms to the 
MTKViewProtocol. Thus, when our application starts up, the view controller and view are assembled for 
us.

For iOS and tvOS, you can use other techniques for constructing the rendering view. 
###(IOS_TVOS_INTRO)

Initializing our MTKView.

Before we can use our MTKView to render a blank screen, we need to initialize a few things first. The 
code for initializing our view is contained in the internalInit method, which is invoked by both the 
initWithFrame: and initWithCoder: methods.

Obtaining the GPU Device

The MTKView by default does not have a device associated with it, and during initialization you must 
obtain the GPU device to use for rendering.

Within our source code the device is obtained with the line

self.device = MTLCreateSystemDefaultDevice();

Setting Other MTKView Parameters

There are a number of other parameters that can be set with the MTKView class, some of which are 
required. For our application we set both the pixel format of the texture that represents our display, and 
the default color to clear the display to, with the calls:

self.colorPixelFormat = MTLPixelFormatBGRA8Unorm;
self.clearColor = MTLClearColorMake(0.1, 0.1, 0.2, 1.0);

There are a number of other optional parameters that may be set to cause the MTKView class to behave 
differently, including settings which control frame rate, and if the display should be redrawn continuously 
on a timer loop or only when the display has been invalidated. (Discussion link 
###(MTKVIEW_OVERVIEW))

Obtaining the Command Queue

The command queue is directly obtained from the device and stored in its own class property for reuse.

self.commandQueue = [self.device newCommandQueue];

Implementing the MTKViewDelegate Methods

There are two methods that must be implemented in the MTKView delegate.
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- (void)mtkView:(MTKView *)view drawableSizeWillChange:(CGSize)size

This method is invoked by the MTKView when its size changes. You would use this method to handle 
tasks such as setting the transformation matrices of your rendering engine to correct for the changed 
aspect ratio, and potentially for reloading or resetting textures or other resources to handle the changed 
resolution of the screen.

For our first sample application, this method does nothing.

- (void)drawInMTKView:(MTKView *)view

This method is called each time you view needs to be redrawn. The parameter passed is the view that 
needs to be redrawn. (Since our sample code inherits from the MTKView class, the view parameter will 
be the same as self.)

For our drawing method we will need to carry out the following steps in order to request that our screen 
be filled with a background color.

Obtaining a Command Buffer.

First, we obtain a command buffer for constructing the rendering commands to render the screen. Because 
the command buffer renders the screen once, if we were creating an animation we would effectively 
create a new buffer for every frame of our animation.

We do this with the call

id<MTLCommandBuffer> buffer = [self.commandQueue commandBuffer];

Creating a Command Encoder

We next create a rendering command encoder for performing a single rendering pass to render our blank 
screen.

Note that if we were rendering a complex scene that requires multiple rendering passes, we could encode 
each rendering pass in its own separate MTLRenderCommandEncoder. But since we are doing a single 
rendering pass, we only need one MTLRenderCommandEncoder.

Remember to create a command encoder we must first create a MTKRenderPassDescriptor with the 
parameters for our encoder.   Because we are rendering to our display, we can use the convenience 1

method in the MTKView class to obtain  a default descriptor for rendering to our display.

MTLRenderPassDescriptor *descriptor = [view currentRenderPassDescriptor];

This is effectively a shortcut for the following:

 This pattern: of creating a descriptor then using the descriptor to generate an encoder or state, is a 1

common design pattern in Metal.
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id<CAMetalDrawable> drawable = self.currentDrawable;

MTLRenderPassDescriptor *descriptor = [MTLRenderPassDescriptor 
renderPassDescriptor];
descriptor.colorAttachments[0].texture = drawable.texture;
descriptor.colorAttachments[0].loadAction = MTLLoadActionClear;
descriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
descriptor.colorAttachments[0].clearColor = self.clearColor;

In the above snippet of code, we first obtain the drawable (which is vended  by the method), then we use 2

it as the destination texture during rendering in our rendering pass. We also specify that the results of the 
rendering command be stored in our screen 'texture', that it should be cleared before drawing into it, and it 
should be cleared to the provided color.

Note: For a system that requires multiple rendering passes, such as with reflection, 
generally we would create a separate writeable texture map to render into in the first 
pass, then use the results in that texture map in the second pass for our reflection special 
effect.

We then use the descriptor to generate our rendering encoder:

id<MTLRenderCommandEncoder> encoder = [buffer 
renderCommandEncoderWithDescriptor:
    descriptor];

Finishing Up.

Since we are not drawing anything (but just allowing the encoder to clear the screen to the background 
color) we can finish up our encoder by calling:

[encoder endEncoding];

If we were doing multiple rendering passes (say, for reflection), we would start constructing the next 
rendering pass here. But since we are not we can finish up our command buffer and submit it to the GPU 
for rendering.

To finish up we first indicate to the buffer that once our screen has been redrawn, it can be 
"presented" (that is, displayed on the screen) by calling:

[buffer presentDrawable:self.currentDrawable];

Once we've done this, we can submit the buffer of commands to the GPU for rendering by calling:

[buffer commit];

 That is, each time the method is called, a new object is created from a pool of objects. Thus, when 2

you call this method, you should store the result in a local variable and reuse the same object (rather 
than calling currentDrawable repeatedly) for the duration of your method call.
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Once all this is done, when we run our finished application (which can be downloaded from GitHub) we 
should see... well...

�

It's not much, granted. But it does show our code works.

Adding Support To Draw A Triangle.

The next obvious step is to draw something. In order to draw something we will need to add support for a 
rendering shader (that is, a small program that actually runs on the GPU), for setting up a rendering 
pipeline (so we know which code snippets on the GPU to execute), for creating a buffer (so we can send 
geometry data to the GPU), and for adding rendering commands to our render command encoder.

A Word About Shaders

Shaders are discussed in greater detail later in this document. ###(INTRO_SHADERS) Shaders, however, 
are basically small routines written in a modified version of C++, which are compiled by Xcode and 
which are automatically loaded into the GPU for you when your application starts up. Most of the 
interesting stuff that can make for visually impressive displays for video games comes from a deep 
understanding of how shaders work.

In the next few examples we will make very basic use of shaders, and try to introduce a few very basic 
concepts along the way.
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A Word About Our Initialization Routine

Our prior example put all of our initialization code inside a single internalInit method. However, this can 
be poor practice in a real-world example, simply because the amount of code necessary to initialize our 
drawing routines can grow to be extraordinarily large. In fact, because of the nature of GPU rendering 
(where for performance we want to put as much stuff in the GPU as we reasonably can), for many 
programs our initialization routine may be the largest block of routines in our entire program.

Thus, we will get into the practice of refactoring our internal initialization into smaller chunks of more 
manageable code.

Creating Our Geometry In A Buffer

As noted above, before we can render any geometry we must somehow get the geometry to our GPU. For 
our triangle we create an MTLBuffer object with the raw data that makes up the 3 corners of our triangle. 
Because geometry is potentially very expensive we create our triangle as part of our internalInit method 
call.

Because we are both laying out the memory of our geometry and using it in the GPU, we must make sure 
the format of the data stored in memory is known to the GPU. The way we handle this is by declaring a 
new class MXVertex which represents the data in our triangle. We then initialize our triangle manually:

    static const MXVertex triangle[] =
    {
        // Homogeneous pts , RGBA colors
        { {  1,  -1, 0, 1 }, { 1, 0, 0, 1 } },
        { { -1,  -1, 0, 1 }, { 0, 1, 0, 1 } },
        { {  0,   1, 0, 1 }, { 0, 0, 1, 1 } },
    };

The location of our points are given in homogeneous coordinates, which we use for handling complex 
transformations, such as rotation and scaling and perspective. ###(INTRO_3D_HOMOGENEOUS)

Once we've constructed the block of memory with our vertices, we create the MTLBuffer with the 
following call:

self.triangle = [self.device newBufferWithBytes:triangle 
                                            length:sizeof(triangle)
                     options:MTLResourceOptionCPUCacheModeDefault];

This will take the block of memory and make it available to the GPU.

Because creating geometry is expensive we do this at initialization time. If you were writing an 
application that modified geometry (such as a 3D CAD program) you would cache the data in an 
MTLBuffer rather than trying to generate the MTLBuffer on the fly each time you render the display.
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Creating Our Pipeline

Next we create our pipeline. This can be far more complicated in that we need to create our shader 
functions used by our pipeline to control how we will display our triangle on the GPU, obtain our shaders, 
and configure our pipeline to pass our geometry to our shaders for rendering.

This is also generally done at initialization time as all of the operations are quite expensive.

Creating the Shader Functions

First we need to create our shader functions.

We have two shader functions for a rendering pass. The first is the vertex shader function; the vertex 
shader handles the transformation of the location of each vertex in our geometry so it is displayed in the 
correct position on the screen.

The second is the fragment shader function; it handles computing the color of each pixel on the screen 
based on information passed to it from the vertex shader.

For this we need to create a .metal file; the file is compiled by Xcode and stored as a resource that is then 
loaded into our GPU when we start up our Metal application.

For our vertex and fragment shaders we need to set up two structures: one declaring the input vertex, and 
one which declares the vertex output:

struct VertexIn {
    float4 position  [[attribute(MXAttributeIndexPosition)]];
    float4 color     [[attribute(MXAttributeIndexColor)]];
};

struct VertexOut
{

float4 position [[position]];
float4 color;

};

Notice they are more or less the same thing. However, the first declaration indicates the attribute indexes 
(in the [[attribute(N)]] declarations) that will also be used when setting up our vertex attributes for our 
pipeline, and the second establishes (in the [[position]] declaration) which stores the coordinates for 
extrapolation of vertices into fragments for rendering.

In practice the two would be very different, depending on the type of rendering we're performing.

Our vertex shader is declared like a C function call, but with extra attributes associated with the 
parameters indicating where they come from:

vertex VertexOut vertex_main(VertexIn v [[stage_in]])
{

VertexOut out;
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out.position = v.position;
out.color = v.color;

return out;
}

Our vertex shader basically copies the geometry to the output without modification. When we start doing 
3D rendering, we will perform other math operations that update the output position based on a 
transformation matrix--but that's for later. 

Our fragment shader is even easier. The fragment shader is called on each visible pixel found in the 
triangle whose vertices were transformed by our vertex shader--with values in VertexOut extrapolated 
across the surface of the triangle. So our fragment shader is pretty simple:

fragment float4 fragment_main(VertexOut v [[stage_in]])
{

return v.color;
}

Loading the Library

Once we've created the .metal file, we can access information about our GPU's compiled graphic or 
compute functions by using the MTLLibrary protocol. We do this during initialization of our pipeline, 
storing a reference to our library away for later use.

We obtain our library from our device by writing:

self.library = [self.device newDefaultLibrary];

Obtaining References to Our Shader Functions

We now can obtain references to our two shader functions by name from our library, storing them in two 
MTLFunction objects.

self.vertexFunction = [self.library newFunctionWithName:@"vertex_main"];
self.fragmentFunction = [self.library newFunctionWithName:
                                                      @"fragment_main"];

Constructing the Vertex Descriptor

The vertex descriptor object MTLVertexDescriptor is used to describe the layout of the memory we 
allocated when we constructed our geometry above. This is used to help tie the memory format and layout 
of our triangle's vertices to the attribute positions in our vertex shader function.

In each attribute of our MTLVertexDescriptor we indicate the type of the attribute (such as a vertex made 
of four floating-point numbers), the offset of the attribute in memory, and the size of the attribute in 
memory.
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We also indicate the 'stride'; that is, the size of each vertex in memory.

MTLVertexDescriptor *d = [[MTLVertexDescriptor alloc] init];
d.attributes[MXAttributeIndexPosition].format = MTLVertexFormatFloat4;
d.attributes[MXAttributeIndexPosition].offset = 0;
d.attributes[MXAttributeIndexPosition].bufferIndex = 0;
d.attributes[MXAttributeIndexColor].format = MTLVertexFormatFloat4;
d.attributes[MXAttributeIndexColor].offset = sizeof(vector_float4);
d.attributes[MXAttributeIndexColor].bufferIndex = 0;
d.layouts[0].stride = sizeof(MXVertex);

Constructing the Pipeline Descriptor

Now that we have all of the pieces used by our pipeline descriptor, we can now build our pipeline 
descriptor MTLRenderPipelineDescriptor.

MTLRenderPipelineDescriptor *pipelineDescriptor = 
[MTLRenderPipelineDescriptor new];
pipelineDescriptor.vertexFunction = self.vertexFunction;
pipelineDescriptor.fragmentFunction = self.fragmentFunction;
pipelineDescriptor.colorAttachments[0].pixelFormat = 
self.colorPixelFormat;
pipelineDescriptor.vertexDescriptor = d;

Building the Pipeline State Object

Once we have the descriptor we build the MTLRenderPipelineState object for use in our system. We store 
this as part of our class for reuse when we actually want to render some graphics.

self.pipeline = [self.device newRenderPipelineStateWithDescriptor:
                                                        pipelineDescriptor 
                                                            error:nil];

Rendering Our Triangle

Now that we've constructed a pipeline state, we can use it with our MTLRenderCommandEncoder to 
actually render our triangle.

Setting our Render Pipeline State

After we have constructed our MTLRenderCommandEncoder we can set the pipeline by calling:

[encoder setRenderPipelineState:self.pipeline];

Note that the pipeline is then used on the drawing commands that follow. If we then were to call 
setRenderPipelineState: with a new pipeline, that new pipeline would apply to subsequent drawing calls. 
In this way the same rendering pass can use multiple pipelines to construct the image.
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Setting the Vertex Buffer With Our Triangle Geometry

We now pass to the encoder the vertex geometry we will render.

[encoder setVertexBuffer:self.triangle 
                  offset:0 
                 atIndex:MXVertexIndexVertices];

Note: Because our vertex shader uses the [[stage_in]] attribute to specify our vertices, 
the vertex buffer containing our geometry must be at index 0. The [[stage_in]] 
parameter implies our geometry will come from index 0.

(TODO: Verify this is correct, and that the buffer 0 index is not implicit by the position in 
the parameter list. Verify we can't mix stage_in and buffer:N attributes.)

Drawing Our Triangle

We can now draw our triangle by calling the appropriate drawing routine with our encoder:

[encoder drawPrimitives:MTLPrimitiveTypeTriangle 
            vertexStart:0 
            vertexCount:3];

Once all these changes have been made, when we compile and run our application (which can be 
downloaded from GitHub), we should see:

Okay, so it's a little more than what we had the last time. But now we've gotten shaders working, we can 
send geometry to our GPU, we can send geometry to our GPU for rendering.

�
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Drawing Our Triangle in 3D

Next we'd like to draw our triangle in 3D.

The problem with a low level API like Metal is that it does not provide a number of tools for 3D graphics, 
but expects you to provide them yourself, either by writing the code yourself or by incorporating a third 
party library.

So in this section we will add support for 3D by writing our own 3D transformation system, and 
incorporate 3D transformations into our vertex shader by sending updated transformation matrices to the 
vertex shader to animate a rotating triangle.

3D Transformations

Homogeneous coordinate systems and transformations used in computer graphics is an entire topic that 
isn't covered here.

Creating the Transformation Class

The MXTransformationStack class provides a complete implementation of transformation matrices 
commonly used in computer graphics (for translation, scaling, rotation and perspective), and also provides 
a mechanism for pushing and popping transformation matrices on a stack so that elements can be re-used 
when rendering a model.

Note: The ability to push and pop transformations is useful when animating an 
articulated figure. For example, the overall body transformation may be constructed first, 
then pushed on a stack. The additional transformations for positioning and moving an 
arm is constructed and used, then the body transformation is popped so the next arm's 
transformation can be constructed, and so forth.

By doing this a hierarchy of transformations, corresponding to the hierarchy of 
relationships between components of a model, can be constructed and managed relatively 
easily.

Our transformation stack operates with the idea that the transformations are constructed 
back to front: that is, the last transformation (such as positioning the body in the world 
scene) is added first, then the next transformation (such as positioning the arm relative to 
the body) is added next, and so forth.

Adding Transformations to Our MXView Class

Each MXTransformationStack object represents a single transformation matrix which accumulates 
multiple translations, rotations and scaling operations into a single 4x4 matrix of numbers. We use two 
such matrices to represent the full translation; one for the perspective transformation and one for the 
model. We do this for later, when we will use the model matrix for lighting calculations.  
 
We also add constructors in a new setupTransformation method which is called from our initializer.
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Updating -mtkView:drawableSizeWillChange:

The method in the MTKViewDelegate protocol is called when the size of the screen changes. We can use 
this to set the proper aspect ratio of our display by resetting and initializing the view perspective. When 
the delegate method is called, we reset the view matrix and set the perspective matrix with the correct 
aspect ratio:

[self.view clear];
[self.view perspective:M_PI/3 
                aspect:size.width/size.height 
                  near:0.1 
                   far:1000];

Updating the model matrix to rotate as we redraw the display.

We update the model matrix each time we pass through the draw method, with the current elapsed time 
since the starting of our application. We then translate our triangle away from the eye position, and slowly 
rotate our triangle by the amount of elapsed time.

double elapsed = CACurrentMediaTime() - self.startTime;
[self.model clear];
[self.model translateByX:0 y:0 z:-2];
[self.model rotateAroundAxis:(vector_float3){ 0, 1, 0 } byAngle:elapsed];
[self.model scaleBy:2];

Updating the Vertex Shader

Now that we have the transformation matrices which represent how we alter the 3D geometry on our 
display, we must pass the transformation matrices to the GPU so our vertex shader can update the location 
of our vertices.

To do this, we define the structure that we wish to pass to the GPU, then set the structure and copy it to 
the GPU via a MTLBuffer. On the GPU side, we obtain a reference to the buffer and use the data passed 
to us to update the vertices.

Declare the Uniforms Structure

We declare the structure format in the shader types header. That way the same declaration is used on both 
sides: the Metal side and the Objective-C side. We can do this because we do not need to use any attribute 
parameters for the Metal declarations that the Objective-C compiler does not understand.

typedef struct MXUniforms
{

matrix_float4x4 model;
matrix_float4x4 view;

} MXUniforms;
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Update the Vertex Shader Function

We need to update our shader function to use the uniforms data that will be passed in. We're passing in the 
parameters using an MTLBuffer, passed in using the setVertexBytes:length:atIndex: method call, which 
we then match up to the parameter in our vertex buffer using the [[buffer(n)]] attribute.

We then update our vertex location to the output vertex location through matrix/vector multiplication.

vertex VertexOut vertex_main(VertexIn v [[stage_in]],
                 constant MXUniforms &u [[buffer(MXVertexIndexUniforms)]])
{

VertexOut out;

float4 worldPosition = u.model * v.position;
out.position = u.view * worldPosition;
out.color = v.color;

return out;
}

Passing in the Uniforms

In our drawing method we need to pass the uniform data into the buffer.

Right after recalculating the model CTM for our drawing, we pass the data into the vertex buffer through 
initializing a structure. We then copy the bytes to the GPU:

MXUniforms u;
u.view = self.view.ctm;
u.model = self.model.ctm;
[encoder setVertexBytes:&u 
                 length:sizeof(MXUniforms) 
                atIndex:MXVertexIndexUniforms];

Putting all of these together and running our application (which can be downloaded from GitHub), we 
now have a rotating triangle:
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�

Loading More Complex Objects From a Resource

Now of course the triangle is interesting, and it's a useful model for if we wish to draw more complex 
objects constructed in memory, it's often useful to be able to load predefined objects from a resource. You 
may wish to do this when building a game, for example.

Resources are loaded using an MDLAsset, and we use the MDLVertexDescriptor to describe the vertex 
offsets in order to load our asset into memory into a known format.

The asset we will be loading is a variation of the Utah Teapot.

Because we have a complex object we're rendering, we also need to enable z-buffering so that the back 
side of the teapot does not draw in front of the front side.

Updating the Vertices for Our Model

First, we must rewrite the vertex descriptor by rewriting the code that generates our vertex descriptor. We 
also need to update the vertex structure on both the Metal and Objective-C sides to match.

The teapot.obj file contains a 3D location for each vertex, along with a 3D normal (an arrow pointing out 
from the center of the teapot at a right angle to the surface), and a texture coordinate so we can wrap our 
teapot with a texture.

Rewriting Our Structures

We first need to replace our MXVertex structure in Objective-C:
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typedef struct MXVertex
{

vector_float3 position;
vector_float3 normal;
vector_float2 texture;

} MXVertex;

And in Metal:

struct VertexIn {
    float3 position  [[attribute(MXAttributeIndexPosition)]];
    float3 normal    [[attribute(MXAttributeIndexNormal)]];
    float3 texture   [[attribute(MXAttributeIndexTexture)]];
};

Rewriting the Vertex Descriptor

Next we rewrite the vertex descriptor to match our vertex structure. This is done using the 
MDLVertexDescriptor class so we can also use it to load our object from a resource using the Model I/O 
API.

MDLVertexDescriptor *d = [[MDLVertexDescriptor alloc] init];

d.attributes[0] = [[MDLVertexAttribute alloc]   
    initWithName:MDLVertexAttributePosition format:MDLVertexFormatFloat3 
    offset:0 bufferIndex:0];

d.attributes[1] = [[MDLVertexAttribute alloc] 
    initWithName:MDLVertexAttributeNormal format:MDLVertexFormatFloat3 
    offset:sizeof(vector_float3) bufferIndex:0];

d.attributes[2] = [[MDLVertexAttribute alloc] 
    initWithName:MDLVertexAttributeTextureCoordinate 
    format:MDLVertexFormatFloat2 offset:sizeof(vector_float3) * 2 
    bufferIndex:0];

d.layouts[0] = [[MDLVertexBufferLayout alloc]  
    initWithStride:sizeof(MXVertex)];

Because we're using the Model I/O API, we'll also need to translate the vertex descriptor to a format 
useable by Metal.

pipelineDescriptor.vertexDescriptor = 
    MTKMetalVertexDescriptorFromModelIO(d);

Loading the Model

We can now use Model I/O to load our teapot from a resource in our application. 

First, we need the URL to the resource in our application's bundle:
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NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"teapot" 
        withExtension:@"obj"];

Next, we create a mesh buffer allocator that will be used to load our asset:

MTKMeshBufferAllocator *allocator = [[MTKMeshBufferAllocator alloc] 
        initWithDevice:self.device];

And then we load our MDLAsset from our resource:

MDLAsset *asset = [[MDLAsset alloc] initWithURL:modelURL 
        vertexDescriptor:d bufferAllocator:allocator];

And finally we convert the asset into an array of meshes which will be used to render the teapot. The 
resulting array of MTKMesh contains buffer data sent to the GPU for rapid rendering of our object.

self.teapot = [MTKMesh newMeshesFromAsset:asset device:self.device 
        sourceMeshes:nil error:nil];

Updating the Vertex Shader Function

Because we've changed the vertices when loading our model we need to update our vertex shader 
function. For this example we're going to use the normal vector to populate our color to help us "see" our 
teapot. Later examples will update our shader to emulate lighting effects.

vertex VertexOut vertex_main(VertexIn v [[stage_in]],
 constant MXUniforms &u 

[[buffer(MXVertexIndexUniforms)]])
{

VertexOut out;

float4 worldPosition = u.model * float4(v.position,1.0);
out.position = u.view * worldPosition;
out.color = float4(v.normal,1.0);

return out;
}

Rendering the Model

Now that we have the model loaded in an array of meshes, we can render the array of meshes:

for (MTKMesh *mesh in self.teapot) {
    MTKMeshBuffer *vertexBuffer = [[mesh vertexBuffers] firstObject];
    [encoder setVertexBuffer:vertexBuffer.buffer
                      offset:vertexBuffer.offset 
                     atIndex:0];

    for (MTKSubmesh *submesh in mesh.submeshes) {
        MTKMeshBuffer *indexBuffer = submesh.indexBuffer;
        [encoder drawIndexedPrimitives:submesh.primitiveType 
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                            indexCount:submesh.indexCount 
                             indexType:submesh.indexType 
                           indexBuffer:indexBuffer.buffer 
                     indexBufferOffset:indexBuffer.offset];
    }
}

Hiding Stuff That Should Not Be Drawn.

Now if we were to simply stop here we would get all sorts of nasty visual effects. That's because we don't 
hide the back-side of the rendered image and elements that may be visually occluded by the front side of 
the teapot.

We need to set a couple of flags in order to prevent parts of the model which should not be visible from 
being drawn.

There are two things we can do to hide the back side of the model: culling back-facing polygons and 
enabling depth testing.

Back-Face Culling

Back face culling works by finding triangles that are "back-facing." The idea is that if we have all our 
triangles with a clock-wise winding, if after the transformations are performed the transformed matrices 
are counter-clockwise, then the polygon is facing away from us--and can be hidden before it is turned into 
an array of pixels.

[encoder setCullMode:MTLCullModeFront];

Note: The triangles in our object are stored in the reverse order expected by Metal, so we 
use the flag to cull front-facing triangles.

Z-Buffer

Even with back-face culling when the teapot rotates so the handle or spout are behind the body of the 
teapot they are still visible. We can resolve this problem by using z-buffering, which keeps track of the 
depth associated with each pixel, overwriting pixels only if they are closer to the camera.

We first enable the depth stencil format in our view by calling setDepthStencilPixelFormat in the 
MTKView. This causes the MTKView class to generate the appropriate depth texture map.

self.depthStencilPixelFormat = MTLPixelFormatDepth32Float;

We also need to specify the depth format with the pipeline descriptor, so our graphics pipeline knows to 
use depth testing. This indicates to the pipeline the format of the depth buffer initialized by the 
MTKView:

pipelineDescriptor.depthAttachmentPixelFormat = 
        self.depthStencilPixelFormat;
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We now create a MTLDepthStencilState. This is used to indicate to the rendering pass encoder the way 
the depth buffer should be used: if the depth buffer is write enabled and the compare function used to 
determine if a pixel is closer.

MTLDepthStencilDescriptor *depthDescriptor = [[MTLDepthStencilDescriptor 
        alloc] init];
depthDescriptor.depthCompareFunction = MTLCompareFunctionLess;
[depthDescriptor setDepthWriteEnabled:YES];

self.depth = [self.device 
        newDepthStencilStateWithDescriptor:depthDescriptor];

And finally we set the depth stencil state to our encoder so the rendering pass uses depth testing.

[encoder setDepthStencilState:self.depth];

Once we make all of the changes above (all uploaded at GitHub) we should see a rotating teapot:

�

Basic Lighting Effects

Of course while this shows all the basics necessary to draw in 3D, it looks terrible. We need to update our 
fragment shader function in order to simulate the lighting effects you would see with a light source 
reflecting off of a surface.

Note that the subject of lighting effects is an entire topic of its own. This section only adds the constants 
necessary for minimal lighting effects: ambient, diffuse and specular lighting.
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Updating the Shader Vertex Values

Before we can carry out any of our lighting effects we need to update our internal structures for the vertex 
data passed to our fragment shader function. We rewrite our VertexOut structure:

struct VertexOut
{

float4 position [[position]];
float3 normal;
float2 texture;

};

We also rewrite our vertex shader function to pass the normal and texture values:

out.normal = v.normal;
out.texture = v.texture;

Ambient Lighting

Ambient lighting is the lighting of an object represented by an omni-directional fixed-intensity light 
source from the background. The ambient lighting color for a polygon is given by:

�

Where M is the surface material's color, L is the color of the ambient light, and ambient is the brightness 
of the ambient light. All values are from 0 to 1, and for each color channel red, green and blue, the 
calculation is repeated for each color channel.

Updating the Shader With Ambient Colors

We set constants defining the color of our light, the color of the teapot, and the ambient intensity, and 
return that for our fragment color:

constant float3 teapotColor(1.0,0.5,0.75);
constant float3 lightColor(1,1,1);
constant float ambientIntensity = 0.1;

fragment float4 fragment_main(VertexOut v [[stage_in]])
{

return float4(teapotColor * lightColor * ambientIntensity,1.0);
}

Diffuse Lighting

Diffuse lighting effects alters the color of our surface depending on the relative angle of the normal of our 
polygon and the light source illuminating our scene.
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This requires we know the angle of the normal vector to our light source. Fortunately we can calculate the 
relative position of our normal vector and our lighting vector (which is relative to our viewpoint) by 
finding the inverse of our model matrix and passing that in to our vertex shader.

Updating Our Uniforms

We first add a new field to our Uniforms structure:

typedef struct MXUniforms
{

matrix_float4x4 model;
matrix_float4x4 view;
matrix_float4x4 inverse; // inverse of model

} MXUniforms;

Next, we populate the inverse when we populate the contents of our uniforms while drawing:

u.inverse = self.model.inverseCtm;

Diffuse Lighting Calculations

The diffuse lighting value is given by calculating the intensity by calculating the dot product of the 
normal vector with the direction to the light. (The dot product is 1 if the normal is pointed in the same 
direction as the light vector, and 0 if they are perpendicular.)

�  

We modify our vertex matrix to calculate the orientation of the normal vector by translating it according 
to the inverse of the model matrix:

float4 nvect = float4(v.normal,0) * u.inverse;
out.normal = normalize(nvect.xyz);

We then update our list of constants to give the light location:

constant float3 lightDirection(1,0,1);

and we update our shader:

fragment float4 fragment_main(VertexOut v [[stage_in]])
{
    // Ambient lighting
    float4 ambient = float4(teapotColor * lightColor * ambientIntensity,
            1.0);

    // Diffuse lighting
    float diffuseIntensity = dot(v.normal,lightDirection);
    diffuseIntensity = clamp(diffuseIntensity,0,1);
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    float4 diffuse = float4(teapotColor * lightColor * diffuseIntensity,
            1.0);

    // Specular lighting

    return ambient + diffuse;
}

Specular Lighting

The specular lighting effect simulates the reflection of a light on the surface of our object. The specular 
lighting effect involves us calculating the direction the light reflects off our surface.

�

We then calculate the specular intensity by calculating the dot product raised to a power. (Note that the 
result of the dot product is a value from 0 to 1, so raising it to a power causes the value to be close to zero 
for most dot product, going to 1 when our dot product is close to 1. Thus higher tightness values cause the 
specular reflection to be smaller.)

�

The color is the calculated as a function of the light color, but not the surface color.

Note: One problem with color effects is getting them right. Often things can go haywire 
because of the wrong vector normal direction, or because of a sign error. If you don't get 
the light effect you expect it is worth experimenting with the results until you see what 
you want.

The math for calculating our specular lighting effect is given by rewriting our fragment shader function:

constant float3 teapotColor(1.0,0.5,0.75);

constant float3 lightColor(1,1,1);
constant float ambientIntensity = 0.1;
constant float3 lightDirection(1,0,1);
constant float3 eyeDirection(0,0,1);
constant float specularTightness = 25;
constant float specularIntensity = 0.75;

fragment float4 fragment_main(VertexOut v [[stage_in]])
{
    const float3 normalLight = normalize(lightDirection);
    const float3 normalEye = normalize(eyeDirection);

    // Ambient lighting
    float4 ambient = float4(teapotColor * lightColor * ambientIntensity,
            1.0);
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    // Diffuse lighting
    float dotprod = dot(v.normal,normalLight);
    float diffuseIntensity = clamp(dotprod,0,1);
    float4 diffuse = float4(teapotColor * lightColor * diffuseIntensity,
            1.0);

    // Specular lighting
    float3 refl = (2 * dotprod) * v.normal - normalLight;
    float specIntensity = dot(refl,normalEye);
    specIntensity = clamp(specIntensity,0,1);
    specIntensity = powr(specIntensity,specularTightness);
    float4 specular = float4(lightColor * specIntensity * 
            specularIntensity,1.0);

    return ambient + diffuse + specular;
}

With all of these changes (available on GitHub) we should see a final shaded teapot:

�

Using Textures

Of course pink teapots can get boring fast. You can add more visual complexity to a scene by using 
texture maps. This shows how to add a texture map, by loading a texture into the GPU, passing it to the 
shader, and using the texture to specify the color of the triangle.
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Note that each vertex in our teapot has a texture coordinate (u,v) associated with it, so we know how a 
texture will wrap around the vertices that make up our teapot.

Loading A Texture

First we need to load a texture into the GPU to render onto our teapot.

Loading the Image Into Memory

The texture is loaded from a resource using the MTKTextureLoader loader, which loads the texture into 
an MTLTexture.

MTKTextureLoader *textureLoader = [[MTKTextureLoader alloc] 
        initWithDevice:self.device];

self.texture = [textureLoader newTextureWithName:@"texture" 
                                     scaleFactor:1.0 
                                          bundle:nil 
                                         options:@{} 
                                           error:nil];

This loads our texture from the asset catalog containing our images.

Pass the Texture to Our Shader

The texture is passed to our GPU through the MTLRenderPassDescriptor.

[encoder setFragmentTexture:self.texture atIndex:MXTextureIndex0];

Update The Fragment Shader

We now need to update our fragment shader to use the appropriate pixel in our texture.

Obtaining the Texture Parameter

In order to use our texture we need to declare the parameter in the list of parameters to our fragment 
shader function:

fragment float4 fragment_main(VertexOut v [[stage_in]],
                              texture2d<float, access::sample> texture 
                                      [[texture(MXTextureIndex0)]])

In order to sample the contents of our texture we need to create a sampler, which we can do within the 
shader function itself:
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constexpr sampler linearSampler(mip_filter::linear,
                                mag_filter::linear,
                                min_filter::linear);

This can also be done by using a MTLSamplerDescriptor to create an MTLSamplerState, and passing it to 
the command encoder by calling the setFragmentSamplerState:atIndex: method. The sampler is then 
passed in as a parameter to our fragment shader function via a [[sampler(index)]] parameter.

Getting the Color of the Teapot

We now have the texture location for our teapot and we have the texture. We can now get the color of our 
teapot at the pixel location by:

float3 teapotColor = texture.sample(linearSampler,v.texture).rgb;

Once we do these steps (at GitHub) we now have a textured teapot.

�

Using Stencils

Stencils provide an additional channel of data (beyond depth) which allows control over which pixels are 
rendered on the screen. Originally used to allow overlaying of graphics, they can be used to achieve a 
number of effects including reflection. This demo will show the teapot reflected in a mirror.

In order to draw our reflected teapot we'll need to do several things.
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First, we'll need to generate two more MTLRenderPipelineState objects; one which will be used to draw 
the stencil shape, another which will be used to draw a semi-transparent surface which will be our 
"mirror."

Second, we'll need to create a second fragment function in order to render the semi-transparent surface.

And third we'll need to draw four objects in total in our rendering pass: the stencil (which will be used to 
clip the reflected teapot so it only draws in the mirror), the reflected teapot, the mirror surface, and the 
unreflected teapot.

Initialization

There are a number of things we need to initialize so we can render our reflection.

Updating the Depth/Stencil Pixel Format

For our drawing we will use an 8-bit stencil. We will update our view's initialization to specify an 8-bit 
stencil and how to clear the stencil on the start of drawing.

self.depthStencilPixelFormat = MTLPixelFormatDepth32Float_Stencil8;
self.clearStencil = 0;

Creating our depth stencil states

Previously we only created a single depth stencil for z-buffer rendering in the setupDepthStencilState 
method. We need to add two more depth stencil states. The first will be used for drawing into the stencil; 
pixels which pass the depth and compare functions will update the stencil value, but it won't update the 
depth buffer.

depthDescriptor = [[MTLDepthStencilDescriptor alloc] init];
depthDescriptor.depthCompareFunction = MTLCompareFunctionLess;

MTLStencilDescriptor *stencilDescriptor = [[MTLStencilDescriptor alloc] 
        init];
stencilDescriptor.stencilCompareFunction = MTLCompareFunctionAlways;
stencilDescriptor.depthStencilPassOperation = MTLStencilOperationReplace;
depthDescriptor.backFaceStencil = stencilDescriptor;
depthDescriptor.frontFaceStencil = stencilDescriptor;
depthDescriptor.depthWriteEnabled = NO;

self.drawStencil = [self.device 
        newDepthStencilStateWithDescriptor:depthDescriptor];

The second will be used to draw only if the stencil value at a pixel location has been set; this is how we 
will make sure we only draw our reflected image inside of our mirror:

depthDescriptor = [[MTLDepthStencilDescriptor alloc] init];
depthDescriptor.depthCompareFunction = MTLCompareFunctionLess;
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stencilDescriptor = [[MTLStencilDescriptor alloc] init];
stencilDescriptor.stencilCompareFunction = MTLCompareFunctionEqual;
depthDescriptor.backFaceStencil = stencilDescriptor;
depthDescriptor.frontFaceStencil = stencilDescriptor;
depthDescriptor.depthWriteEnabled = YES;

self.maskStencil = [self.device 
newDepthStencilStateWithDescriptor:depthDescriptor];

Creating Our Pipelines

For drawing our mirror and for drawing our stencil we also need to create two separate pipeline states. 
Neither need to perform the complicated fragment calculations used to texture map our teapot, but instead 
can use a very simplified fragment:

fragment float4 fragment_mirror(VertexOut v [[stage_in]])
{

return float4(1,1,1,0.2);
}

We load a reference to our fragment function in our setupPipeline method:

self.fragmentFunction2 = [self.library 
        newFunctionWithName:@"fragment_mirror"];

We extend our first render pipeline to indicate the format of our stencil attachment:

pipelineDescriptor.stencilAttachmentPixelFormat = 
        self.depthStencilPixelFormat;

And we build two more pipelines; the first with alpha blending enabled. (The red elements show the 
elements which enable alpha blending.)

MTLRenderPipelineDescriptor *pipelineDescriptor2 = 
[MTLRenderPipelineDescriptor new];
pipelineDescriptor2.vertexFunction = self.vertexFunction;
pipelineDescriptor2.fragmentFunction = self.fragmentFunction2;
pipelineDescriptor2.vertexDescriptor = 
        MTKMetalVertexDescriptorFromModelIO(d);
pipelineDescriptor2.depthAttachmentPixelFormat = 
        self.depthStencilPixelFormat;
pipelineDescriptor2.stencilAttachmentPixelFormat = 
        self.depthStencilPixelFormat;

pipelineDescriptor2.colorAttachments[0].pixelFormat = 
        self.colorPixelFormat;
pipelineDescriptor2.colorAttachments[0].blendingEnabled = YES;
pipelineDescriptor2.colorAttachments[0].rgbBlendOperation = 
        MTLBlendOperationAdd;
pipelineDescriptor2.colorAttachments[0].alphaBlendOperation = 
        MTLBlendOperationAdd;
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pipelineDescriptor2.colorAttachments[0].sourceRGBBlendFactor = 
        MTLBlendFactorSourceAlpha;
pipelineDescriptor2.colorAttachments[0].sourceAlphaBlendFactor = 
        MTLBlendFactorSourceAlpha;
pipelineDescriptor2.colorAttachments[0].destinationRGBBlendFactor = 
        MTLBlendFactorOneMinusSourceAlpha;
pipelineDescriptor2.colorAttachments[0].destinationAlphaBlendFactor = 
        MTLBlendFactorOneMinusSourceAlpha;

self.pipeline2 = [self.device 
        newRenderPipelineStateWithDescriptor:pipelineDescriptor2 
        error:nil];

The second has drawing disabled (highlighted segment in red):

MTLRenderPipelineDescriptor *pipelineDescriptor3 = 
        [MTLRenderPipelineDescriptor new];
pipelineDescriptor3.vertexFunction = self.vertexFunction;
pipelineDescriptor3.fragmentFunction = self.fragmentFunction2;
pipelineDescriptor3.vertexDescriptor = 
        MTKMetalVertexDescriptorFromModelIO(d);
pipelineDescriptor3.depthAttachmentPixelFormat = 
        self.depthStencilPixelFormat;
pipelineDescriptor3.stencilAttachmentPixelFormat = 
        self.depthStencilPixelFormat;

pipelineDescriptor3.colorAttachments[0].pixelFormat = 
        self.colorPixelFormat;
pipelineDescriptor3.colorAttachments[0].writeMask = MTLColorWriteMaskNone;

self.pipelineNoDraw = [self.device 
        newRenderPipelineStateWithDescriptor:pipelineDescriptor3 
        error:nil];

Create Our Mirror Square

Our mirror is simply a square, and we create a square with two triangles and store it in an MTLBuffer, 
using the same MXVertex structure used to store our teapot:

static const MXVertex square[] = {
    { { -0.5, 0, -0.5 }, { 0, 0, 1 }, { -1, -1 } },
    { { -0.5, 0,  0.5 }, { 0, 0, 1 }, { -1,  1 } },
    { {  0.5, 0, -0.5 }, { 0, 0, 1 }, {  1, -1 } },
    { { -0.5, 0,  0.5 }, { 0, 0, 1 }, { -1,  1 } },
    { {  0.5, 0, -0.5 }, { 0, 0, 1 }, {  1, -1 } },
    { {  0.5, 0,  0.5 }, { 0, 0, 1 }, {  1,  1 } },
};
self.mirror = [self.device newBufferWithBytes:square 
                                       length:sizeof(square)
                        options:MTLResourceOptionCPUCacheModeDefault];
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Refactor Our Drawing

Because we're drawing the mesh that represents our teapot multiple times, we extract our drawing code 
into a common method:

- (void)renderMesh:(NSArray<MTKMesh *> *)meshArray 
         inEncoder:(id<MTLRenderCommandEncoder>)encoder
{
    for (MTKMesh *mesh in meshArray) {
        MTKMeshBuffer *vertexBuffer = [[mesh vertexBuffers] firstObject];
        [encoder setVertexBuffer:vertexBuffer.buffer 
                          offset:vertexBuffer.offset 
                         atIndex:0];

        for (MTKSubmesh *submesh in mesh.submeshes) {
            MTKMeshBuffer *indexBuffer = submesh.indexBuffer;
            [encoder drawIndexedPrimitives:submesh.primitiveType 
                                indexCount:submesh.indexCount 
                                 indexType:submesh.indexType 
                               indexBuffer:indexBuffer.buffer 
                         indexBufferOffset:indexBuffer.offset];
        }
    }
}

This method is sufficiently common enough it's worth copying this into its own method to simplify 
drawing.

Drawing Our Model.

With all the pieces (the three separate pipelines, the three separate depth descriptors, our model and our 
refactored drawing, we can now render the elements of our scene in our rendering pass.

Note that because we're dealing with a semi-transparent polygon, we must render the objects in the 
correct order: the upside down teapot must be rendered before the semi-transparent mirror so that the 
colors of our teapot are attenuated properly. 

Render the Stencil

The first step is to draw the shape of our mirrored surface in the stencil buffer. We use this with the non-
drawing pipeline (so we don't draw into the color buffer or the depth buffer), and render our mirror 
surface to set only the stencil buffer.

[self.view push];
[self.view translateByX:0 y:-0.55 z:0];

u.view = self.view.ctm;
[encoder setVertexBytes:&u 
                 length:sizeof(MXUniforms) 
                atIndex:MXVertexIndexUniforms];
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[encoder setStencilReferenceValue:1];
[encoder setRenderPipelineState:self.pipelineNoDraw];
[encoder setDepthStencilState:self.drawStencil];
[encoder setCullMode:MTLCullModeNone];
[encoder setVertexBuffer:self.mirror 
                  offset:0 
                 atIndex:MXVertexIndexVertices];
[encoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 
vertexCount:6];

[self.view pop];

This will set the view matrix (pushing the old CTM state in order to preserve it), and perform the 
translation to move our mirror surface down below the teapot. We then render our mirror surface, setting 
the pipeline, stencil state and culling modes as required so we only draw in the stencil.

Render the Teapot

Now we render our right-side up teapot:

u.view = self.view.ctm;
[encoder setVertexBytes:&u 
                 length:sizeof(MXUniforms) 
                atIndex:MXVertexIndexUniforms];

[encoder setRenderPipelineState:self.pipeline];
[encoder setCullMode:MTLCullModeFront];
[encoder setDepthStencilState:self.depth];
[encoder setFragmentTexture:self.texture atIndex:MXTextureIndex0];

[self renderMesh:self.teapot inEncoder:encoder];

Render the Reflected Teapot

Now we render the upside down teapot. We render the teapot using the depth stencil state, so we only 
render in the pixels that were originally drawn above. This causes the reflected teapot to only be visible in 
the mirror.

[self.view push];
[self.view translateByX:0 y:-1.1 z:0];
[self.view scaleByX:1 y:-1 z:1];

u.view = self.view.ctm;
[encoder setVertexBytes:&u 
                 length:sizeof(MXUniforms) 
                atIndex:MXVertexIndexUniforms];

// scale by -1 flips the winding order, so flip the culling mode.
[encoder setRenderPipelineState:self.pipeline];
[encoder setCullMode:MTLCullModeBack];
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[encoder setDepthStencilState:self.maskStencil];
[encoder setFragmentTexture:self.texture atIndex:MXTextureIndex0];

[self renderMesh:self.teapot inEncoder:encoder];
[self.view pop];

Render the Mirror Surface

And finally we render the semi-transparent mirror surface. This will be rendered in front of our reflected 
teapot, giving it the mirror surface appearance.

[self.view push];
[self.view translateByX:0 y:-0.55 z:0];

u.view = self.view.ctm;
[encoder setVertexBytes:&u length:sizeof(MXUniforms) 
atIndex:MXVertexIndexUniforms];

[encoder setRenderPipelineState:self.pipeline2];
[encoder setCullMode:MTLCullModeNone];
[encoder setDepthStencilState:self.depth];
[encoder setVertexBuffer:self.mirror 
                  offset:0 
                 atIndex:MXVertexIndexVertices];
[encoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 
vertexCount:6];

[self.view pop];

Once these changes have been made (at GitHub) you should see the following:

�
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Complex Rendering Techniques

This section covers more complex rendering techniques, including techniques which execute multiple 
rendering passes or which combine compute kernels and rendering techniques for rendering the results of 
a simulation.

It is worth going through these examples after going through the examples above, and they are provided 
in as terse a way possible so you can understand how they work and which elements of Metal are used to 
execute them.

Shadow Mapping

Shadow mapping is its own complex topic, and there are several tutorials on the topic. This provides a 
simple implementation which adds shadows to our rotating teapot. We start with the unreflected teapot 
from the prior example.

This example will require two pass rendering: the first pass renders a shadow map from the point of view 
of the light, rendering the results into an off-screen texture in the GPU. The second pass uses the off-
screen texture to apply shadows to the surface of our teapot.

This demo illustrates the steps necessary in Metal, as an illustration of how Metal works. The result is 
passable--but requires refinement if we want something that is visually pleasing.

The Shadow Rendering Pass

We must first construct all of the infrastructure for rendering our teapot from the point of view of our 
light. The resulting depth map will become our shadow mask, used to test if a point on our final rendered 
image is in the shadows.

Adding the Shadow Transformation Matrix to Our Uniforms

Shadow mapping works by rendering the scene's depth map from the point of view of our light. This 
requires we supply a matrix which can be used to render the scene from our light's point of view.

typedef struct MXUniforms
{
    matrix_float4x4 model;
    matrix_float4x4 view;
    matrix_float4x4 inverse;  // inverse of model
    matrix_float4x4 shadow;   // matrix for light position/shadow mapping
} MXUniforms;

Defining our Shadow Shader Functions

We now need to create two new shader functions used by our shadow rendering pipeline. Since we are 
rendering to the depth map but not rendering colors, our vertex and fragment shaders are quite simple. 
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The vertex shader only needs to transform vertices to the destination output using the new shadow matrix. 
The fragment shader does nothing.

vertex VertexOut vertex_shadow(VertexIn v [[stage_in]],
           constant MXUniforms &u [[buffer(MXVertexIndexUniforms)]])
{
    VertexOut out;
    out.position = u.shadow * float4(v.position,1.0);
    return out;
}

fragment void fragment_shadow(VertexOut v [[stage_in]])
{
}

Setting Up Our Shadow Render Pipeline

The steps are similar to setting up our original pipeline earlier. The key differences is that we are only 
rendering to our depth map; we are not rendering to a color texture map.

First, we load our shadow shader functions:

self.shadowVertexFunction = [self.library 
        newFunctionWithName:@"vertex_shadow"];
self.shadowFragmentFunction = [self.library 
        newFunctionWithName:@"fragment_shadow"];

Next, we create our shadow pipeline, disabling rendering to the color output channel:

MTLRenderPipelineDescriptor *shadowPipelineDescriptor =  
        [MTLRenderPipelineDescriptor new];
shadowPipelineDescriptor.vertexFunction = self.shadowVertexFunction;
shadowPipelineDescriptor.fragmentFunction = self.shadowFragmentFunction;
shadowPipelineDescriptor.vertexDescriptor =  
        pipelineDescriptor.vertexDescriptor;
shadowPipelineDescriptor.depthAttachmentPixelFormat =  
        MTLPixelFormatDepth32Float;
shadowPipelineDescriptor.colorAttachments[0].writeMask =  
        MTLColorWriteMaskNone;

self.shadowPipeline = [self.device  
        newRenderPipelineStateWithDescriptor:shadowPipelineDescriptor  
        error:nil];

The Shadow Map

Our shadow map is simply the depth map from the first rendering pass generated by our shadow pipeline. 
We render this into a texture map with format MTLPixelFormatDepth32Float.

First, we create a MTLTextureDescriptor which describes the format of our texture map:
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MTLTextureDescriptor *shadowDescriptor = [MTLTextureDescriptor 
        texture2DDescriptorWithPixelFormat:MTLPixelFormatDepth32Float 
                                     width:SHADOW_WIDTH 
                                    height:SHADOW_HEIGHT 
                                 mipmapped:NO];

The dimensions SHADOW_WIDTH and SHADOW_HEIGHT are defined at the top of our MXView.m 
file.

Note that our texture is not "mipmapped".

Before we create our texture we need to set some parameters. Because our depth map is only used by the 
GPU, we need to set the storage mode as private:

shadowDescriptor.storageMode = MTLStorageModePrivate;

We also need to set the usage of our texture. Because we're rendering to our texture we need to set the 
texture as a render target. We also need to set our texture usage for reading so we can read from it in the 
second rendering pass.

shadowDescriptor.usage = MTLTextureUsageRenderTarget | 
        MTLTextureUsageShaderRead;

Once we've set up our descriptor we can create the MTLTexture which represents our shadow map:

self.shadowMap = [self.device newTextureWithDescriptor:shadowDescriptor];

Rendering the Shadow Map

Our drawInMTKView method is reorganized to make it easier to see the two rendering passes, with the 
transformation matrices moved to the top of the function. First, we generate our transformations and 
populate our uniforms structure as before, and we also set our shadow matrix.

Note: The shadow map population code in this example is kludged. In a more 
sophisticated application you would generate the shadow map according to the location 
of the light in your scene.

For our first rendering pass where we render our shadow map, we create a render pass descriptor and 
populate it ourselves. Note that the store action is to store; we wish to preserve the depth map generated 
for our second pass. We also set the depth attachment texture to our shadow map, so the results of the first 
pass is rendered into our shadow map.

descriptor = [MTLRenderPassDescriptor renderPassDescriptor];
descriptor.depthAttachment.texture = self.shadowMap;
descriptor.depthAttachment.loadAction = MTLLoadActionClear;
descriptor.depthAttachment.storeAction = MTLStoreActionStore;
descriptor.depthAttachment.clearDepth = 1.0;
encoder = [buffer renderCommandEncoderWithDescriptor:descriptor];
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Next, we set up the encoder to render using our shadow pipeline. We reuse the depth stencil state, since 
our behavior for handling depth mapping is the same as for rendering our scene: our pixels are updated if 
a pixel is closer to our camera (or, in this case, our light). (But since we're only rendering the depth map 
and not color pixels, this means in the end our depth map will contain the depth of the closest pixel at 
each pixel location.)

[encoder setRenderPipelineState:self.shadowPipeline];
[encoder setVertexBytes:&u length:sizeof(MXUniforms) 
atIndex:MXVertexIndexUniforms];
[encoder setDepthStencilState:self.depth];
[self renderMesh:self.teapot inEncoder:encoder];
[encoder endEncoding];

At the end of the first pass, we will have a depth map from the point of view of our camera.

�

In the image above, white is a depth of 1.0, and darker shades are pixels closer to the light. (This was 
captured by using the debug functionality in Xcode.)

Using the Shadow Map

Now that we have our shadow map we need to use it when rendering our scene. We do this by updating 
our shaders from a prior example to add the shadow coordinates to our vertices.

The idea is this: instead of simply tracking the position of each vertex where the vertex will eventually be 
rendered on our display, we track two positions: the position of the vertex on our display and the position 
of the vertex in our shadow map. Then in the fragment shader we can determine if our pixel is in the 
shadow, and adjust our colors accordingly.

Updating the Shader's VertexOut Structure

We need to add the position of our vertex in our shadow map to our VertexOut structure in our shader.

struct VertexOut
{

float4 position [[position]];
float4 shadow;
float3 normal;
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float2 texture;
};

Populating the Shadow Position

Our vertex shader function needs to be updated to populate the shadow field. We reuse our shadow 
transformation matrix to do this:

vertex VertexOut vertex_main(VertexIn v [[stage_in]],
        constant MXUniforms &u [[buffer(MXVertexIndexUniforms)]])
{
    VertexOut out;

    float4 worldPosition = u.model * float4(v.position,1.0);
    out.position = u.view * worldPosition;

    out.shadow = u.shadow * float4(v.position,1.0);

    float4 nvect = float4(v.normal,0) * u.inverse;
    out.normal = normalize(nvect.xyz);
    out.texture = v.texture;

    return out;
}

The Second Rendering Pass

Remember: this is a two-pass rendering operation. We've now rendered the shadow map, we next must 
render our teapot. The steps are the same as above, but we also pass in our shadow map as a fragment 
texture, so we can use the shadow map during rendering. (The red highlighted segment is the additional 
step necessary to pass in our shadow map.)

descriptor = [view currentRenderPassDescriptor];
encoder = [buffer renderCommandEncoderWithDescriptor:descriptor];
[encoder setRenderPipelineState:self.pipeline];
[encoder setVertexBytes:&u 

                    length:sizeof(MXUniforms) 
                   atIndex:MXVertexIndexUniforms];

[encoder setDepthStencilState:self.depth];

[encoder setFragmentTexture:self.texture 
                       atIndex:MXTextureIndex0];

[encoder setFragmentTexture:self.shadowMap 
                       atIndex:MXTextureIndexShadow];

[self renderMesh:self.teapot inEncoder:encoder];
[encoder endEncoding];
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Updating Our Fragment Shader Function

We also need to modify our fragment shader function to obtain the depth from our shadow map, and 
determine if the depth of the pixel we wish to render is in front of the depth from our shadow map (and 
thus, visible to the light), or if it is behind the depth from our shadow map (and thus, is in the shadows).

First, we need to update our fragment shader function to add the shadow map as a parameter:

fragment float4 fragment_main(VertexOut v [[stage_in]],
        texture2d<float, access::sample> texture 
                [[texture(MXTextureIndex0)]],
        depth2d<float, access::sample> shadowMap 
                [[texture(MXTextureIndexShadow)]])

Next we need to get the depth from our shadow map. We need to do a little math to get the correct pixel, 
however. First, because our shadow field is in homogeneous coordinates, we need to calculate:

�

Note: If we were using an orthographic projection for our light source--that is, if our 
light source was at infinity, we can skip the division by w. That's because in an 
orthographic projection, w = 1.

If this was the case, many of these steps to remap our shadow coordinates into texture 
coordinates could be put into the vertex shader, gaining a bit of a performance gain since 
we would not need to do three divisions by w, as well as addition and subtraction and 
division by 2.

This is left as an exercise for the reader.

Next we need to take into account that while points in our geometry coordinate system run from -1 to 1 
from bottom left to top right:

�

(-1,-1)

(1,1)
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Pixels in our texture map run from 0 to 1 from top left to bottom right:

�

We handle this in our fragment shader.

float x = (1 + v.shadow.x / v.shadow.w) / 2;
float y = (1 - v.shadow.y / v.shadow.w) / 2;
float depth = shadowMap.sample(linearSampler,float2(x,y));
float zd = v.shadow.z / v.shadow.w - 0.001;

At this point, zd is the depth of our current point in our shadow coordinate system, and depth is the depth 
of the pixel closest to the light. (We subtract a small fudge factor in order to prevent "shadow acne.")

This means if zd is larger than depth, our point is farther from the light, and is in the shadow.

We use this to skip calculating the diffuse and specular lighting in our fragment shader by adding the 
following line to skip those calculations:

if (zd >= depth) return ambient;

One all these changes are made (reflected in GitHub), we should see:

�

(0,0)

(1,1)
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The effect can be subtle, and is more apparent when running the application and watching the animation. 
However, we can compare the image with a version without shadow mapping:

�

If you look at where the handle meets the body, you can see shadowing making the teapot looking more 
"realistic."

Fairy Lights

Fairy lights is one term for small glowing dots of lights that can dance around a scene, and this next demo 
will show adding fairy lights by demonstrating two aspects of Metal: rendering with the 
drawPrimitives:vertexStart:vertexCount:instanceCount: method (and modifying the vertex shader 
function to deal with multiple instances of the same object), and with a vertex shader that is a little more 
interesting than just transforming points in 3D space.

Each fairy light is rendered as a square with a texture associated with it; the texture is semi-transparent (to 
render the glowing effect).

Loading the Fairy Texture

The fairy texture itself is stored as a texture in our assets.

�

Our fragment shader will color the texture with the appropriate color. It's loaded along with the texture for 
our teapot:

self.fairyTexture = [textureLoader newTextureWithName:@"fairy" 
                                          scaleFactor:1.0 
                                               bundle:nil 
                                              options:@{} 
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                                                error:nil];

Setting Up the Vertices

The vertices for our fairy lights are represented as two dimensional vertices:

struct VertexIn {
    float2 position       [[attribute(MXAttributeIndexPosition)]];
};

(And the corresponding MXFairyVertex declaration in MXGeometry.h.)

We then define the square as two triangles:

static const MXFairyVertex square[] = {
    { { -1, -1 } },
    { { -1,  1 } },
    { {  1, -1 } },
    { { -1,  1 } },
    { {  1, -1 } },
    { {  1,  1 } }
};
self.fairySquare = [self.device newBufferWithBytes:square
                                            length:sizeof(square) 
                        options:MTLResourceOptionCPUCacheModeDefault];

Setting Up the Fairy Locations

Each fairy light instance will be drawn with its corresponding fairy light record. The list of fairy lights 
will be passed in with our fairy vectors, which will have the end result of duplicating our squares, once 
for each fairy light record.

The Fairy Light Instance Record

Our fairy light record is:

struct FairyLightIn {
float3 position;
float3 color;
float size;

float2 angle;
float speed;
float radius;

};

(And the corresponding MXFairyLocation declaration in MXGeometry.h)
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Initializing the Fairy Lights

The fairy lights are stored as a fixed array in our MXView record. The lights are initialized with random 
locations and rotational speeds (so they are scattered around the waist of the teapot) in the 
setupFairyLights method.

Adding Our Fairy Shader Functions

We now need to create our vertex and fragment shader functions.

The Vertex Shader Function

Our vertex shader function will be invoked with a drawing method which calls the fairy vertex function 
for each vertex in our box, for each instance of our fairy lights. This will allow us to specify the location 
of our vertices on our screen.

So in addition to the vertex location of each corner of our square and the uniforms giving the 
transformations we will use to find the position of our fairy lights, we also receive the array of fairy light 
positions and an instance index that allows us to get the values for the specific instance being rendered:

vertex VertexOut vertex_fairy(VertexIn v [[stage_in]],
      constant MXUniforms &u [[buffer(MXVertexIndexUniforms)]],
      constant FairyLightIn *positions [[buffer(MXVertexIndexLocations)]],
      uint iid [[instance_id]])

The array of fairy light positions are specified as passed in with the vertex buffers, and the specific 
instance being rendered is specified with the [[instance_id]] attribute.

Note: the attributes [[instance_id]] is used to iterate through all the instances when any 
version of the MTLRenderCommandEncoder draw methods that specify an instance 
count is called. The array of positions happens to have the same length as the range of 
instance counts.

The Metal Shader specification also specifies a [[vertex_id]] if you wish to iterate 
through the vertices in a similar fashion. Both of these can be used with the 
[[base_vertex]] and [[base_instance]] attributes.

Now the position of the center of each fairy light should be specified by the 3D transformed into screen 
space:

float4 screenPos = u.view * u.model * float4(positions[iid].position,1.0);

This gives us the center of our fairy light on the screen. We then adjust the corners appropriately by using 
the vertex parameter, adjusting the size by dividing by the w component of our screen position. (The w 
component correlates to how far from the camera our light is.)

screenPos.xy += v.position * 0.03 * positions[iid].size / screenPos.w;
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We then pass the screen position to our vertex shader, as well as the UV location (for the texture map) and 
the color (from the fairy lights array) to our shader:

out.position = screenPos;
out.uv = (v.position + 1)/2;
out.color = positions[iid].color;

The Fragment Shader Function

The fragment shader function adjusts the color of our texture and sets the transparency for our color.

fragment float4 fragment_fairy(VertexOut v [[stage_in]],
        texture2d<float> fairyTexture [[texture(MXTextureIndex0)]])
{
    constexpr sampler linearSampler(mip_filter::linear,
                                    mag_filter::linear,
                                    min_filter::linear);

    float4 c = fairyTexture.sample(linearSampler,v.uv);
    float3 color = v.color * c.x;
    return float4(color,c.x);
}

Setting Up the Fairy Rendering Pipeline

Because our fairy lights are rendered as semi-transparent lights we need to create a new rendering 
pipeline to handle our fairy lights.

The Fairy Attribute Descriptors

Because our fairy light vertices have a different layout than our teapot, we need to create a new 
MTLVertexDescriptor describing our layout of our MXFairyVertex record:

MTLVertexDescriptor *fairyDescriptors = [[MTLVertexDescriptor alloc] 
        init];
fairyDescriptors.attributes[MXAttributeIndexPosition].format = 
        MTLVertexFormatFloat2;
fairyDescriptors.attributes[MXAttributeIndexPosition].offset = 0;
fairyDescriptors.attributes[MXAttributeIndexPosition].bufferIndex = 0;
fairyDescriptors.layouts[0].stride = sizeof(MXFairyVertex);

The Fairy Attribute Pipeline State

We can now set up our pipeline. We need to set the blending options to our pipeline descriptor to handle 
alpha blending:

MTLRenderPipelineDescriptor *fairyPipelineDescriptor = 
[MTLRenderPipelineDescriptor new];
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fairyPipelineDescriptor.vertexFunction = self.fairyVertexFunction;
fairyPipelineDescriptor.fragmentFunction = self.fairyFragmentFunction;
fairyPipelineDescriptor.vertexDescriptor = fairyDescriptors;
fairyPipelineDescriptor.depthAttachmentPixelFormat = 
self.depthStencilPixelFormat;
fairyPipelineDescriptor.colorAttachments[0].pixelFormat = 
self.colorPixelFormat;

fairyPipelineDescriptor.colorAttachments[0].blendingEnabled = YES;
fairyPipelineDescriptor.colorAttachments[0].rgbBlendOperation = 
MTLBlendOperationAdd;
fairyPipelineDescriptor.colorAttachments[0].alphaBlendOperation = 
MTLBlendOperationAdd;
fairyPipelineDescriptor.colorAttachments[0].sourceRGBBlendFactor = 
MTLBlendFactorSourceAlpha;
fairyPipelineDescriptor.colorAttachments[0].sourceAlphaBlendFactor = 
MTLBlendFactorSourceAlpha;
fairyPipelineDescriptor.colorAttachments[0].destinationRGBBlendFactor = 
MTLBlendFactorOneMinusSourceAlpha;
fairyPipelineDescriptor.colorAttachments[0].destinationAlphaBlendFactor = 
MTLBlendFactorOneMinusSourceAlpha;

self.fairyPipeline = [self.device 
newRenderPipelineStateWithDescriptor:fairyPipelineDescriptor error:nil];

The Fairy Depth Stencil

Fairy lights are drawn as semi-transparent objects. This implies two things: we must render them after 
we've rendered the other objects in our scene. And since fairy lights do not block each other (in z-order), 
fairy lights should not update the depth buffer (and cause fairy lights not drawn in order to block each 
other). 

We can achieve the latter part by creating a new MTLDepthStencilState:

MTLDepthStencilDescriptor *fairyDepthDescriptor = 
        [[MTLDepthStencilDescriptor alloc] init];
fairyDepthDescriptor.depthCompareFunction = MTLCompareFunctionLess;
[fairyDepthDescriptor setDepthWriteEnabled:NO];

self.fairyDepth = [self.device 
        newDepthStencilStateWithDescriptor:fairyDepthDescriptor];

Rendering Our Fairy Lights

Now that we've set up our rendering pipeline and geometry, we can now render our fairy lights.

Before committing our final rendering pass to render our teapot, we add the code to update our fairy light 
positions, then pass in the information to draw our fairy lights:

for (int i = 0; i < MAX_FAIRYLIGHTS; ++i) {
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    ... Update our fairy light locations.
}
[encoder setRenderPipelineState:self.fairyPipeline];
[encoder setDepthStencilState:self.fairyDepth];
[encoder setVertexBuffer:self.fairySquare 
                  offset:0 
                 atIndex:MXVertexIndexVertices];
[encoder setVertexBytes:fairyLights 
                 length:sizeof(fairyLights) 
                atIndex:MXVertexIndexLocations];
[encoder setFragmentTexture:self.fairyTexture atIndex:MXTextureIndex0];
[encoder drawPrimitives:MTLPrimitiveTypeTriangle 
            vertexStart:0 
            vertexCount:6 
          instanceCount:MAX_FAIRYLIGHTS];

[encoder endEncoding];

Note the line highlighted in red is how we request we render multiple instances of the same vertex array.

When all of this is put together (as noted in GitHub), we should get fairy lights:

�

Deferred Shading

The problem with our fairy lights is that we don't see their illumination reflected on the surface of our 
teapot. We can add this effect by using deferred shading.

In essence, instead of rendering our teapot to the on-screen display, we render our teapot to an off-screen 
buffer. We also render other information we need to properly calculate our lighting effects (such as the 
normal vector for each visible pixel) into separate buffers--collectively known as a Geometry Buffer or G-
Buffer. With the information in our G-Buffer we can then calculate the lighting effects for each of our 
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lights, and limit the lighting effect so we only add the light from each fairy light that is close to the pixels 
to be updated.

Because the purpose of this demo is to illustrate the parts of Metal required to execute Deferred Shading, 
some of this presentation won't be as optimal as possible. Further, as these demos target the Macintosh, 
we won't take advantage of Raster Order Groups, as used in Apple's Deferred Lighting example.

Generating the G-Buffer

The first phase of our changes will split our rendering pipeline into two phases: one which generates the 
G-Buffer and one which uses the G-Buffer to perform our lighting calculations.

Our lighting calculations (from above) require the color of each pixel in the teapot and the normal vector; 
from that, we calculate the shaded colors of our teapot.

Note: Different shading effects may require different values to be calculated in the first 
phase, to be carried over to the second phase in our G-Buffer. For example, Apple's 
deferred lighting example calculates albedo and specular information rather than color 
information, then obtains the texture map color information at a later rendering pass.

Create the GBuffer

The first rendering pass for our G-Buffer system generates our G-Buffer. While the vertex_gbuffer vertex 
shader function remains the same as the prior vertex_main vertex buffer from above, the second half 
which renders our fragment is modified to render our G-Buffer instead.

We declare our G-Buffer:

struct GBufferOut
{
    float4 color [[color(MXColorIndexColor)]];
    float4 normal [[color(MXColorIndexNormal)]];
};

The [[color(N)]] attribute is associated with the colorAttachment array of the MTLRenderPassDescriptor. 
It allows us to write multiple color channels at the same time.

In this case we're writing to two texture maps. The first will contain the color of our object as (r,g,b), and 
the alpha channel contains the shadow (with 0 meaning the pixel is in a shadow and 1 meaning it is not). 
The second will contain our transformed normal vector in (r,g,b), and the alpha channel is ignored.

Our fragment shader which renders into our G-Buffer should seem familiar as it is the first half of our 
prior fragment_main fragment shader function, but instead of calculating our lighting effects we put our 
intermediate values into our output buffer.

fragment GBufferOut fragment_gbuffer(VertexOut v [[stage_in]],
        texture2d<float, access::sample> texture 
                [[texture(MXTextureIndex0)]],
        depth2d<float, access::sample> shadowMap 
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                [[texture(MXTextureIndexShadow)]])
{
    constexpr sampler linearSampler (mip_filter::linear,
                                     mag_filter::linear,
                                     min_filter::linear);

float x = (1 + v.shadow.x / v.shadow.w) / 2;
float y = (1 - v.shadow.y / v.shadow.w) / 2;
float depth = shadowMap.sample(linearSampler,float2(x,y));
float zd = v.shadow.z / v.shadow.w - 0.001;

/*
 * Generate the GBuffer
 */

GBufferOut out;

// Texture color
float3 teapotColor = texture.sample(linearSampler,v.texture).rgb;
out.color = float4(teapotColor, (zd >= depth) ? 0 : 1);

// Normal vector
out.normal = float4(v.normal,0);

return out;
}

Creating our GBuffer rendering pipeline

We now load our new shader functions:

self.gVertexFunction = [self.library 
        newFunctionWithName:@"vertex_gbuffer"];
self.gFragmentFunction = [self.library 
        newFunctionWithName:@"fragment_gbuffer"];

The rendering pipeline will then make use of our new vertex functions, and must also specify the format 
of our color attachments:

MTLRenderPipelineDescriptor *gBufferPipelineDescriptor = 
[MTLRenderPipelineDescriptor new];
gBufferPipelineDescriptor.vertexFunction = self.gVertexFunction;
gBufferPipelineDescriptor.fragmentFunction = self.gFragmentFunction;
gBufferPipelineDescriptor.colorAttachments[0].pixelFormat = 
        MTLPixelFormatRGBA16Float;
gBufferPipelineDescriptor.colorAttachments[1].pixelFormat = 
        MTLPixelFormatRGBA32Float;
gBufferPipelineDescriptor.vertexDescriptor = 
        MTKMetalVertexDescriptorFromModelIO(d);
gBufferPipelineDescriptor.depthAttachmentPixelFormat = 
        MTLPixelFormatDepth32Float_Stencil8;
gBufferPipelineDescriptor.stencilAttachmentPixelFormat = 
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        MTLPixelFormatDepth32Float_Stencil8;

self.gPipeline = [self.device 
        newRenderPipelineStateWithDescriptor:gBufferPipelineDescriptor 
        error:nil];

Creating our Stencil

We also use a stencil in our G-Buffer, to note the pixels that are being rendered to. This way we can skip 
the majority of the screen that does not contain a teapot. (This is important so we can bypass doing 
lighting calculations where they are not necessary.)

Our drawing stencil sets the stencil value to a non-zero value as we render.

MTLDepthStencilDescriptor *drawStencilDescriptor = 
[[MTLDepthStencilDescriptor alloc] init];
drawStencilDescriptor.depthCompareFunction = MTLCompareFunctionLess;
[drawStencilDescriptor setDepthWriteEnabled:YES];

MTLStencilDescriptor *drawStencil = [[MTLStencilDescriptor alloc] init];
drawStencil.stencilCompareFunction = MTLCompareFunctionAlways;
drawStencil.depthStencilPassOperation = MTLStencilOperationReplace;
drawStencilDescriptor.backFaceStencil = drawStencil;
drawStencilDescriptor.frontFaceStencil = drawStencil;

self.drawStencil = [self.device 
newDepthStencilStateWithDescriptor:drawStencilDescriptor];

Allocating the G-Buffer Textures

Our G-Buffer textures are the same dimensions as our screen. We use calls to 
mtkView:drawableSizeWillChange: in order to allocate and resize our textures as the screen is created and 
as it is resized. The textures are then updated in the setupGBufferTextureWithSize: method call.

MTLTextureDescriptor *gbufferDescriptor;

// Color map
gbufferDescriptor = [MTLTextureDescriptor 
texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA16Float 
width:size.width height:size.height mipmapped:NO];
gbufferDescriptor.storageMode = MTLStorageModePrivate;
gbufferDescriptor.usage = MTLTextureUsageRenderTarget | 
MTLTextureUsageShaderRead;
self.colorMap = [self.device newTextureWithDescriptor:gbufferDescriptor];

// normal vectors
gbufferDescriptor = [MTLTextureDescriptor 
texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA32Float 
width:size.width height:size.height mipmapped:NO];
gbufferDescriptor.storageMode = MTLStorageModePrivate;
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gbufferDescriptor.usage = MTLTextureUsageRenderTarget | 
MTLTextureUsageShaderRead;
self.normalMap = [self.device newTextureWithDescriptor:gbufferDescriptor];

Note that we use a different format for our colors than for our normals, so we can preserve the maximum 
resolution possible for our normals. Of course in practice you would fiddle with these parameters to 
balance saving memory and graphical resolution.

Also note that sometimes on MacOS, the drawInMTKView method may be called prior to our resize 
method being called. If this happens we need to skip drawing, as the GBuffer textures have not been 
initialized yet:

if (self.colorMap == nil) return;

Rendering our G-Buffers

We now can render our G-Buffer. Note that the depth and stencils we use for rendering is the same as the 
depth and stencil rendering textures used by our view.

First, we set up our descriptor:

descriptor = [MTLRenderPassDescriptor renderPassDescriptor];
descriptor.depthAttachment.texture = self.depthStencilTexture;
descriptor.depthAttachment.loadAction = MTLLoadActionClear;
descriptor.depthAttachment.storeAction = MTLStoreActionStore;
descriptor.depthAttachment.clearDepth = 1.0;
descriptor.stencilAttachment.texture = self.depthStencilTexture;
descriptor.stencilAttachment.loadAction = MTLLoadActionClear;
descriptor.stencilAttachment.storeAction = MTLStoreActionStore;
descriptor.stencilAttachment.clearStencil = 0;

descriptor.colorAttachments[MXColorIndexColor].texture = self.colorMap;
descriptor.colorAttachments[MXColorIndexColor].clearColor = 
        MTLClearColorMake(0.1, 0.1, 0.2, 1.0);
descriptor.colorAttachments[MXColorIndexColor].loadAction = 
        MTLLoadActionClear;
descriptor.colorAttachments[MXColorIndexColor].storeAction = 
        MTLStoreActionStore;
descriptor.colorAttachments[MXColorIndexNormal].texture = self.normalMap;
descriptor.colorAttachments[MXColorIndexNormal].clearColor = 
        MTLClearColorMake(1, 0, 0, 0);
descriptor.colorAttachments[MXColorIndexNormal].loadAction = 
        MTLLoadActionClear;
descriptor.colorAttachments[MXColorIndexNormal].storeAction = 
        MTLStoreActionStore;
encoder = [buffer renderCommandEncoderWithDescriptor:descriptor];

Next we set the graphics pipeline, the matrices (for transformation), the drawing stencil and other 
attributes to render our teapot into the G-Buffer:

[encoder setRenderPipelineState:self.gPipeline];
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[encoder setVertexBytes:&u length:sizeof(MXUniforms) 
atIndex:MXVertexIndexUniforms];
[encoder setDepthStencilState:self.drawStencil];
[encoder setStencilReferenceValue:1];
[encoder setFragmentTexture:self.texture atIndex:MXTextureIndex0];
[encoder setFragmentTexture:self.shadowMap atIndex:MXTextureIndexShadow];
[self renderMesh:self.teapot inEncoder:encoder];
[encoder endEncoding];

Rendering the Image from the G-Buffer

At this stage we have the color, normal and shadow information stored in two off-screen textures. We 
need to perform a second pass in order to render our scene, which performs the lighting calculations on a 
per-pixel basis.

This is performed as a second rendering pass.

Declare Our Rendering Shaders

In order to render the pixels we will ultimately render a square that covers the entire screen. This will 
trigger our fragment shader function to render all of the pixels on our screen (that are part of our stencil).

Our vertex shader is very simple: it takes a two-dimensional vertex representing the corners of our screen, 
and outputs a vertex output structure which contains both the u/v coordinates of our color and normal 
textures, and the x/y location on our screen.

struct VertexIn {
    float2 position     [[attribute(MXAttributeIndexPosition)]];
};

struct VertexOut {
    float4 position     [[position]];
    float2 uv;
    float2 xy;
};

vertex VertexOut vertex_grender(VertexIn v [[stage_in]])
{
    VertexOut out;

    out.position = float4(v.position,0,1);
    out.xy = v.position;
    out.uv = float2((1 + v.position.x)/2,(1 - v.position.y)/2);

    return out;
}

Note: We pass in the (x,y) parameter because when the position is passed to our fragment 
shader in the [[position]] parameter, it is scaled to pixel coordinates. So if we wish to 
preserve the pre-pixel coordinates, we need to pass the parameters in separately.
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We also perform the (u,v) coordinate transformation here in order to accelerate the 
conversion process to the texture coordinates used to access our color and normal 
vectors. That's required because while we are passed in the pixel coordinates, we access 
our textures using coordinates in the range (0,1).

The fragment shader contains all the code we previously used to calculate our diffuse and specular 
lighting effects:

constant float3 lightColor(1,1,1);
constant float ambientIntensity = 0.1;
constant float3 lightDirection(1,0,1);
constant float3 eyeDirection(0,0,1);
constant float specularTightness = 25;
constant float specularIntensity = 0.75;

fragment float4 fragment_grender(VertexOut v [[stage_in]],
        texture2d<float, access::sample> color
                [[texture(MXTextureIndexColor)]],
        texture2d<float, access::sample> normal 
                [[texture(MXTextureIndexNormal)]],
        depth2d<float, access::sample> depth 
                [[texture(MXTextureIndexDepth)]])
{
    constexpr sampler linearSampler (mip_filter::linear,
                                     mag_filter::linear,
                                     min_filter::linear);

/*
 * Get the color and run our color calculations for our basic
 * lighting effects
 */

const float3 normalLight = normalize(lightDirection);
const float3 normalEye = normalize(eyeDirection);

/*
 * Get our values from the gbuffer for lighting calculations
 */

float3 teapotColor = color.sample(linearSampler,v.uv).rgb;
float shadow = color.sample(linearSampler,v.uv).a;
float3 teapotNormal = normalize(normal.sample(linearSampler,v.uv).xyz);

/*
 * Calculate lighting effects for primary lighting
 */

// Ambient lighting
float4 ambient = float4(teapotColor * lightColor * ambientIntensity,

        1.0);
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// Diffuse lighting
float dotprod = dot(teapotNormal,normalLight);
float diffuseIntensity = clamp(dotprod,0,1) * shadow;
float4 diffuse = float4(teapotColor * lightColor * diffuseIntensity,

        1.0);

// Specular lighting
float3 refl = (2 * dotprod) * teapotNormal - normalLight;
float specIntensity = dot(refl,normalEye);
specIntensity = clamp(specIntensity,0,1);
specIntensity = powr(specIntensity,specularTightness) * shadow;
float4 specular = float4(lightColor * specIntensity * 

        specularIntensity,1.0);

return ambient + diffuse + specular;
}

Creating our Stencil Descriptor

We use the stencil in the prior pass to skip processing pixels that do not need to be processed:

MTLDepthStencilDescriptor *maskStencilDescriptor = 
[[MTLDepthStencilDescriptor alloc] init];
maskStencilDescriptor.depthCompareFunction = MTLCompareFunctionLess;
[maskStencilDescriptor setDepthWriteEnabled:NO];

MTLStencilDescriptor *maskStencil = [[MTLStencilDescriptor alloc] init];
maskStencil.stencilCompareFunction = MTLCompareFunctionEqual;
maskStencilDescriptor.backFaceStencil = maskStencil;
maskStencilDescriptor.frontFaceStencil = maskStencil;

self.maskStencil = [self.device 
newDepthStencilStateWithDescriptor:maskStencilDescriptor];

Creating our Graphics Pipeline

We also need to create a new graphics pipeline with our shaders:

self.grVertexFunction = [self.library 
        newFunctionWithName:@"vertex_grender"];
self.grFragmentFunction = [self.library 
        newFunctionWithName:@"fragment_grender"];

MTLRenderPipelineDescriptor *grBufferPipelineDescriptor = 
        [MTLRenderPipelineDescriptor new];
grBufferPipelineDescriptor.vertexFunction = self.grVertexFunction;
grBufferPipelineDescriptor.fragmentFunction = self.grFragmentFunction;
grBufferPipelineDescriptor.colorAttachments[0].pixelFormat = 
        self.colorPixelFormat;
grBufferPipelineDescriptor.vertexDescriptor = fairyDescriptors;
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grBufferPipelineDescriptor.depthAttachmentPixelFormat = 
        MTLPixelFormatDepth32Float_Stencil8;
grBufferPipelineDescriptor.stencilAttachmentPixelFormat = 
        MTLPixelFormatDepth32Float_Stencil8;

self.grPipeline = [self.device 
        newRenderPipelineStateWithDescriptor:grBufferPipelineDescriptor 
        error:nil];

Rendering Our Scene

We can now render our scene using our shader into our screen.

descriptor = [view currentRenderPassDescriptor];
descriptor.depthAttachment.loadAction = MTLLoadActionLoad;
descriptor.stencilAttachment.loadAction = MTLLoadActionLoad;
encoder = [buffer renderCommandEncoderWithDescriptor:descriptor];

[encoder setRenderPipelineState:self.grPipeline];
[encoder setStencilReferenceValue:1];
[encoder setVertexBuffer:self.square offset:0 
atIndex:MXVertexIndexVertices];
[encoder setDepthStencilState:self.maskStencil];
[encoder setFragmentTexture:self.colorMap atIndex:MXTextureIndexColor];
[encoder setFragmentTexture:self.normalMap atIndex:MXTextureIndexNormal];
[encoder setFragmentTexture:self.depthStencilTexture 
atIndex:MXTextureIndexDepth];
[encoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 
vertexCount:6];

At this stage, if you were to run our code (available on GitHub) you would see--well pretty much the 
same thing as you've seen in the prior example above.

That's because we've done a lot of work to separate geometry from shading--but then we've done nothing 
with our geometry. 

�

Aug 12, 2017 Page �  of �59 65

https://github.com/w3woody/Metal/tree/Example10


This, however, is a good checkpoint to make sure that we are in fact populating and using our G-Buffer 
correctly. If we use Xcode and look at the debugger we can see the steps our system is using to compose 
our scene:

�

This can be a very powerful tool to help visualize the steps used in rendering a scene.

At this point you may be thinking "sure, we've done all this work--but so what?"

The thing is, now that we have the geometry of the scene we can use it to help efficiently illuminate our 
fairy lights as they dance around our teapot.
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For each fairy light we render a square that is (approximately) the range of pixels that would be 
illuminated by our fairy light. We then calculate the (x,y,z) location of our teapot by using an inverse 
transformation, and use that information to calculate how brightly the fairy light will illuminate the 
surface.

Adding the Glowing Lights

For us to properly calculate the intensity of the glow on the teapot added by a fairy light, we need to 
obtain the (x,y,z) position of a pixel on the screen. There are two ways we can handle this. The first is by 
storing the (x,y,z) location of each pixel in our G Buffer. The advantage is that this is extremely fast--but 
it has the disadvantage of requiring significantly more memory.

The other way is to use an inverse transformation matrix to translate from screen space back to model 
space. This has the disadvantage of requiring a full matrix multiply per pixel. We will use the second 
option.

Adding the View Inverse

We add the inverse of the view matrix to our uniforms.

typedef struct MXUniforms
{
    matrix_float4x4 model;
    matrix_float4x4 view;
    matrix_float4x4 inverse;    // inverse of model
    matrix_float4x4 vinverse;   // inverse of view
    matrix_float4x4 shadow;     // matrix for shadow mapping
} MXUniforms;

Adding the Shader Functions

The shader functions for our fairy light illumination shaders calculates the amount each fairy light 
illuminates our teapot. The vertex shader provides the position of each light in model space, the screen 
position and coordinates on our G-Buffer texture map, and the color of each fairy light. It's similar to our 
fairy light vertex shader, but it passes more information so we can calculate our illumination.

Note that each fairy light illumination area is constrained by an area about 5 times bigger than the fairy 
light itself. The assumption is that the visible part of the illumination from our lights will only contribute 
to a finite volume around our fairly light--so we do not need to perform a shading calculation for the 
entire teapot--just a small area around the light where the teapot is close to the light.

vertex VertexOut vertex_illumination(VertexIn v [[stage_in]],
        constant MXUniforms &u [[buffer(MXVertexIndexUniforms)]],
        constant FairyLightIn *positions 
                [[buffer(MXVertexIndexLocations)]],
        uint iid [[instance_id]])
{

VertexOut out;
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// Transform location and offset
float4 worldPos = u.model * float4(positions[iid].position,1.0);
float4 screenPos = u.view * worldPos;
// Offset the X/Y location. Note this is 5 times bigger than with
// the fairy light shaders.
screenPos.xy += v.position * 0.15 * positions[iid].size;
out.position = screenPos;

float2 screenXY = screenPos.xy / screenPos.w;

// Pass through position, adjust for screen texture. Pass color
out.lightPos = worldPos.xyz;
out.xy = screenXY;
out.uv = float2((1 + screenXY.x)/2,(1 - screenXY.y)/2);
out.color = positions[iid].color;
return out;

}

The illumination fragment shader function calculates the (x,y,z) position of each point on the screen, 
giving us the position of the point on the teapot. It then calculates the square of the distance (to attenuate 
the light as the point gets farther) as well as the dot product between the vertex pointing to the light and 
the normal of the teapot. 

These are then used to calculate the illumination added by the light (by virtue of changing the alpha 
channel of the returned color).

fragment float4 fragment_illumination(VertexOut v [[stage_in]],
        constant MXUniforms &u [[buffer(MXVertexIndexUniforms)]],
        texture2d<float, access::sample> color 
                [[texture(MXTextureIndexColor)]],
        texture2d<float, access::sample> normal 
                [[texture(MXTextureIndexNormal)]],
        depth2d<float, access::sample> depth 
                [[texture(MXTextureIndexDepth)]])
{
    constexpr sampler linearSampler (mip_filter::linear,
                                     mag_filter::linear,
                                     min_filter::linear);

float z = depth.sample(linearSampler, v.uv);
float4 pos = float4(v.xy,z,1);
float4 spos = u.vinverse * pos;
float3 ppos = spos.xyz / spos.w;

/*
 * Grab color, normal
 */

float3 teapotNormal = normalize(normal.sample(linearSampler,v.uv).xyz);

/*
 * Find distance to the light
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 */

float3 delta = v.lightPos - ppos;
float r2 = dot(delta,delta) * 100;
if (r2 < 1) r2 = 1;
else r2 = 1/r2;
if (r2 < 0.01) r2 = 0;

float3 posvec = normalize(delta);
float diffuse = clamp(dot(posvec,teapotNormal) * r2, 0, 1);

return float4(v.color,diffuse);
}

Create the Illumination Pipeline

Of course with new shader functions we need a new pipeline state. We also need to set the pipeline state 
for alpha blending, as our lights are blended with the color of the teapot.

MTLRenderPipelineDescriptor *fairyLightPipelineDescriptor = 
        [MTLRenderPipelineDescriptor new];
fairyLightPipelineDescriptor.vertexFunction = 
        self.fairyLightVertexFunction;
fairyLightPipelineDescriptor.fragmentFunction = 
        self.fairyLightFragmentFunction;
fairyLightPipelineDescriptor.vertexDescriptor = fairyDescriptors;
fairyLightPipelineDescriptor.depthAttachmentPixelFormat = 
        self.depthStencilPixelFormat;
fairyLightPipelineDescriptor.stencilAttachmentPixelFormat = 
        self.depthStencilPixelFormat;
fairyLightPipelineDescriptor.colorAttachments[0].pixelFormat = 
        self.colorPixelFormat;

fairyLightPipelineDescriptor.colorAttachments[0].blendingEnabled = YES;
fairyLightPipelineDescriptor.colorAttachments[0].rgbBlendOperation = 
        MTLBlendOperationAdd;
fairyLightPipelineDescriptor.colorAttachments[0].alphaBlendOperation = 
        MTLBlendOperationAdd;
fairyLightPipelineDescriptor.colorAttachments[0].sourceRGBBlendFactor = 
        MTLBlendFactorSourceAlpha;
fairyLightPipelineDescriptor.colorAttachments[0].sourceAlphaBlendFactor = 
        MTLBlendFactorSourceAlpha;
fairyLightPipelineDescriptor.colorAttachments[0].destinationRGBBlendFactor 
= MTLBlendFactorOneMinusSourceAlpha;
fairyLightPipelineDescriptor.colorAttachments[0].destinationAlphaBlendFact
or = MTLBlendFactorOneMinusSourceAlpha;

self.fairyLightPipeline = [self.device 
        newRenderPipelineStateWithDescriptor:fairyLightPipelineDescriptor 
        error:nil];
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Create the Depth Stencil State

We also need to create a new depth stencil state. The new state should ignore the z-buffer, but mask 
against the stencil (which is set only where the teapot is being drawn). This allows us to calculate the 
illumination for each light as it is added to the teapot.

Also note that we ignore the z-buffer depth because the visibility components of our calculations have 
already been performed.

MTLDepthStencilDescriptor *illuminationStencilDescriptor = 
        [[MTLDepthStencilDescriptor alloc] init];
illuminationStencilDescriptor.depthCompareFunction = 
        MTLCompareFunctionAlways;
[illuminationStencilDescriptor setDepthWriteEnabled:NO];

MTLStencilDescriptor *illuminationStencil = [[MTLStencilDescriptor alloc] 
        init];
illuminationStencil.stencilCompareFunction = MTLCompareFunctionEqual;
illuminationStencilDescriptor.backFaceStencil = illuminationStencil;
illuminationStencilDescriptor.frontFaceStencil = illuminationStencil;

self.illuminationStencil = [self.device 
        newDepthStencilStateWithDescriptor:illuminationStencilDescriptor];

Rendering the Illumination

We render the illumination from our sprites after we've rendered the teapot but before the fairy lights 
themselves. The code passes in our G-Buffer to our shader so the appropriate lighting calculations can be 
performed.

[encoder setRenderPipelineState:self.fairyLightPipeline];
[encoder setDepthStencilState:self.illuminationStencil];
[encoder setVertexBuffer:self.square 
                  offset:0 
                 atIndex:MXVertexIndexVertices];
[encoder setVertexBytes:&u 
                 length:sizeof(MXUniforms) 
                atIndex:MXVertexIndexUniforms];
[encoder setVertexBytes:fairyLights 
                 length:sizeof(fairyLights) 
                atIndex:MXVertexIndexLocations];
[encoder setFragmentTexture:self.colorMap 
                    atIndex:MXTextureIndexColor];
[encoder setFragmentTexture:self.normalMap 
                    atIndex:MXTextureIndexNormal];
[encoder setFragmentTexture:self.depthStencilTexture 
                   atIndex:MXTextureIndexDepth];
[encoder drawPrimitives:MTLPrimitiveTypeTriangle 
            vertexStart:0 
            vertexCount:6 
          instanceCount:MAX_FAIRYLIGHTS];
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Once we make the changes (which are also available on GitHub), we should see:

�

The effect is subtle but noticeable.

Aug 12, 2017 Page �  of �65 65

https://github.com/w3woody/Metal/tree/Example10b

	The Metal Execution Model
	The Use of Protocols
	The Device
	Obtaining a Device
	The Command Queue
	The Command Buffer
	The Command Encoder
	Rendering Command Encoder
	Compute Command Encoder
	Memory Management Tasks
	Parallel Rendering
	Building a Basic MacOS Metal Application
	Starting a New Metal Application
	Creating the View
	Initializing our MTKView.
	Obtaining the GPU Device
	Setting Other MTKView Parameters
	Obtaining the Command Queue
	Implementing the MTKViewDelegate Methods
	- (void)mtkView:(MTKView *)view drawableSizeWillChange:(CGSize)size
	- (void)drawInMTKView:(MTKView *)view
	Obtaining a Command Buffer.
	Creating a Command Encoder
	Finishing Up.
	Adding Support To Draw A Triangle.
	A Word About Shaders
	A Word About Our Initialization Routine
	Creating Our Geometry In A Buffer
	Creating Our Pipeline
	Creating the Shader Functions
	Loading the Library
	Obtaining References to Our Shader Functions
	Constructing the Vertex Descriptor
	Constructing the Pipeline Descriptor
	Building the Pipeline State Object
	Rendering Our Triangle
	Setting our Render Pipeline State
	Setting the Vertex Buffer With Our Triangle Geometry
	Drawing Our Triangle
	Drawing Our Triangle in 3D
	3D Transformations
	Creating the Transformation Class
	Adding Transformations to Our MXView Class
	Updating -mtkView:drawableSizeWillChange:
	Updating the model matrix to rotate as we redraw the display.
	Updating the Vertex Shader
	Declare the Uniforms Structure
	Update the Vertex Shader Function
	Passing in the Uniforms
	Loading More Complex Objects From a Resource
	Updating the Vertices for Our Model
	Rewriting Our Structures
	Rewriting the Vertex Descriptor
	Loading the Model
	Updating the Vertex Shader Function
	Rendering the Model
	Hiding Stuff That Should Not Be Drawn.
	Back-Face Culling
	Z-Buffer
	Basic Lighting Effects
	Updating the Shader Vertex Values
	Ambient Lighting
	Updating the Shader With Ambient Colors
	Diffuse Lighting
	Updating Our Uniforms
	Diffuse Lighting Calculations
	Specular Lighting
	Using Textures
	Loading A Texture
	Loading the Image Into Memory
	Pass the Texture to Our Shader
	Update The Fragment Shader
	Obtaining the Texture Parameter
	Getting the Color of the Teapot
	Using Stencils
	Initialization
	Updating the Depth/Stencil Pixel Format
	Creating our depth stencil states
	Creating Our Pipelines
	Create Our Mirror Square
	Refactor Our Drawing
	Drawing Our Model.
	Render the Stencil
	Render the Teapot
	Render the Reflected Teapot
	Render the Mirror Surface
	Complex Rendering Techniques
	Shadow Mapping
	The Shadow Rendering Pass
	Adding the Shadow Transformation Matrix to Our Uniforms
	Defining our Shadow Shader Functions
	Setting Up Our Shadow Render Pipeline
	The Shadow Map
	Rendering the Shadow Map
	Using the Shadow Map
	Updating the Shader's VertexOut Structure
	Populating the Shadow Position
	The Second Rendering Pass
	Updating Our Fragment Shader Function
	Fairy Lights
	Loading the Fairy Texture
	Setting Up the Vertices
	Setting Up the Fairy Locations
	The Fairy Light Instance Record
	Initializing the Fairy Lights
	Adding Our Fairy Shader Functions
	The Vertex Shader Function
	The Fragment Shader Function
	Setting Up the Fairy Rendering Pipeline
	The Fairy Attribute Descriptors
	The Fairy Attribute Pipeline State
	The Fairy Depth Stencil
	Rendering Our Fairy Lights
	Deferred Shading
	Generating the G-Buffer
	Create the GBuffer
	Creating our GBuffer rendering pipeline
	Creating our Stencil
	Allocating the G-Buffer Textures
	Rendering our G-Buffers
	Rendering the Image from the G-Buffer
	Declare Our Rendering Shaders
	Creating our Stencil Descriptor
	Creating our Graphics Pipeline
	Rendering Our Scene
	Adding the Glowing Lights
	Adding the View Inverse
	Adding the Shader Functions
	Create the Illumination Pipeline
	Create the Depth Stencil State
	Rendering the Illumination

